Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study

被引:248
作者
Chamorro, Leonardo P. [2 ]
Porte-Agel, Fernando [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn, CH-1015 Lausanne, Switzerland
[2] Univ Minnesota, St Anthony Falls Lab, Dept Civil Engn, Minneapolis, MN 55414 USA
关键词
Atmospheric boundary layer; Thermal stratification; Turbulence; Wind-tunnel experiment; Wind-turbine wake; AIR-FLOW; TURBULENCE; POWER;
D O I
10.1007/s10546-010-9512-1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Wind-tunnel experiments were carried out to study turbulence statistics in the wake of a model wind turbine placed in a boundary-layer flow under both neutral and stably stratified conditions. High-resolution velocity and temperature measurements, obtained using a customized triple wire (cross-wire and cold wire) anemometer, were used to characterize the mean velocity, turbulence intensity, turbulent fluxes, and spectra at different locations in the wake. The effect of the wake on the turbulence statistics is found to extend as far as 20 rotor diameters downwind of the turbine. The velocity deficit has a nearly axisymmetric shape, which can be approximated by a Gaussian distribution and a power-law decay with distance. This decay in the near-wake region is found to be faster in the stable case. Turbulence intensity distribution is clearly non-axisymmetric due to the non-uniform distribution of the incoming velocity in the boundary layer. In the neutral case, the maximum turbulence intensity is located above the hub height, around the rotor tip location and at a distance of about 4-5.5 rotor diameters, which are common separations between wind turbines in wind farms. The enhancement of turbulence intensity is associated with strong shear and turbulent kinetic energy production in that region. In the stable case, the stronger shear in the incoming flow leads to a slightly stronger and larger region of enhanced turbulence intensity, which extends between 3 and 6 rotor diameters downwind of the turbine location. Power spectra of the streamwise and vertical velocities show a strong signature of the turbine blade tip vortices at the top tip height up to a distance of about 1-2 rotor diameters. This spectral signature is stronger in the vertical velocity component. At longer downwind distances, tip vortices are not evident and the von Karman formulation agrees well with the measured velocity spectra.
引用
收藏
页码:515 / 533
页数:19
相关论文
共 30 条
[1]  
[Anonymous], 2007, RISOR1607 RIS NAT LA
[2]   Spatial and temporal distributions of US winds and wind power at 80 m derived from measurements [J].
Archer, CL ;
Jacobson, MZ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D9)
[3]  
Arya P.S., 2001, Introduction to Micrometeorology London, England
[4]  
ARYA S, 1968, 0868676 COL STAT U
[5]   ENDOW (Efficient development of offshore wind farms):: Modelling wake and boundary layer interactions [J].
Barthelmie, R ;
Larsen, G ;
Pryor, S ;
Jorgensen, H ;
Bergström, H ;
Schlez, W ;
Rados, K ;
Lange, B ;
Volund, P ;
Neckelmann, S ;
Mogensen, S ;
Schepers, G ;
Hegberg, T ;
Folkerts, L ;
Magnusson, M .
WIND ENERGY, 2004, 7 (03) :225-245
[6]  
Bruun HH, 1995, HOTWIRE ANEMOMETRY P
[7]   Subfilter-scale fluxes over a surface roughness transition.: Part I:: Measured fluxes and energy transfer rates [J].
Carper, Matthew A. ;
Porte-Agel, Fernando .
BOUNDARY-LAYER METEOROLOGY, 2008, 126 (01) :157-179
[8]   A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects [J].
Chamorro, Leonardo P. ;
Porte-Agel, Fernando .
BOUNDARY-LAYER METEOROLOGY, 2009, 132 (01) :129-149
[9]   LABORATORY STUDY OF DIFFUSSION IN STABLY STRATIFIED FLOW [J].
CHAUDHRY, FH ;
MERONEY, RN .
ATMOSPHERIC ENVIRONMENT, 1973, 7 (04) :443-454
[10]  
DERBYSHIRE SH, 1990, Q J ROY METEOR SOC, V116, P127, DOI 10.1002/qj.49711649106