Dynamics of the GroEL protein complex: Effects of nucleotides and folding mutants

被引:58
作者
Sparrer, H [1 ]
Lilie, H [1 ]
Buchner, J [1 ]
机构
[1] UNIV REGENSBURG,INST BIOPHYS & PHYS BIOCHEM,D-93040 REGENSBURG,GERMANY
关键词
maltose binding protein; GroEL; chaperonin; protein folding; kinetic analysis;
D O I
10.1006/jmbi.1996.0235
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chaperonins are a ubiquitous class of ring-shaped oligomeric protein complexes that are of crucial importance for protein folding in vivo. Analysis of the underlying functional principles had relied mainly on model proteins the (un)folding of which is dominated by irreversible side-reactions. We used maltose-binding protein (MBP) as a substrate protein for GroEL, since the refolding of this protein is completely reversible and thus allows a detailed analysis of the molecular parameters that determine the interaction of GroEL with non-native protein. We show that MBP folding intermediates are effectively trapped by GroEL in a diffusion-controlled reaction. This complex is stabilized via unspecific hydrophobic interactions. Stabilization energies for wild-type MBP increasing linearly with ionic strength from 50 kJ/mol to 60 kJ/mol. Depending on the intrinsic folding rate and the hydrophobicity of the substrate protein, the interaction of GroEL with MBP folding intermediates leads to a dramatically decreased apparent refolding rate of MBP (wild-type) or a complete suppression of folding (MBP folding mutant Y283D). On the basis of our data, a quantitative kinetic model of the GroEL-mediated folding cycle is proposed, which allows simulation of the partial reactions of the binding and release cycles under all conditions tested. In the presence of ATP and non-hydrolysable analogues, MBP is effectively released from GroEL, since the overall dissociation constant is reduced by three orders of magnitude. Interestingly, binding of nucleotide does not change the off rate by more than a factor of 3. However the on-rate is decreased by at least two orders of magnitude. Therefore, the rebinding reaction is prevented and folding occurs in solution. (C) 1996 Academic Press Limited
引用
收藏
页码:74 / 87
页数:14
相关论文
共 50 条
  • [1] ANALYSIS OF NUMERICAL-METHODS FOR COMPUTER-SIMULATION OF KINETIC PROCESSES - DEVELOPMENT OF KINSIM - A FLEXIBLE, PORTABLE SYSTEM
    BARSHOP, BA
    WRENN, RF
    FRIEDEN, C
    [J]. ANALYTICAL BIOCHEMISTRY, 1983, 130 (01) : 134 - 145
  • [2] THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM
    BRAIG, K
    OTWINOWSKI, Z
    HEGDE, R
    BOISVERT, DC
    JOACHIMIAK, A
    HORWICH, AL
    SIGLER, PB
    [J]. NATURE, 1994, 371 (6498) : 578 - 586
  • [3] GROE FACILITATES REFOLDING OF CITRATE SYNTHASE BY SUPPRESSING AGGREGATION
    BUCHNER, J
    SCHMIDT, M
    FUCHS, M
    JAENICKE, R
    RUDOLPH, R
    SCHMID, FX
    KIEFHABER, T
    [J]. BIOCHEMISTRY, 1991, 30 (06) : 1586 - 1591
  • [4] LOCATION OF A FOLDING PROTEIN AND SHAPE CHANGES IN GROEL-GROES COMPLEXES IMAGED BY CRYOELECTRON MICROSCOPY
    CHEN, S
    ROSEMAN, AM
    HUNTER, AS
    WOOD, SP
    BURSTON, SG
    RANSON, NA
    CLARKE, AR
    SAIBIL, HR
    [J]. NATURE, 1994, 371 (6494) : 261 - 264
  • [5] CHUN SY, 1993, J BIOL CHEM, V268, P20855
  • [6] THE ANTIFOLDING ACTIVITY OF SECB PROMOTES THE EXPORT OF THE ESCHERICHIA-COLI MALTOSE-BINDING PROTEIN
    COLLIER, DN
    BANKAITIS, VA
    WEISS, JB
    BASSFORD, PJ
    [J]. CELL, 1988, 53 (02) : 273 - 283
  • [7] THE FOLDING OF GROEL-BOUND BARNASE AS A MODEL FOR CHAPERONIN-MEDIATED PROTEIN-FOLDING
    CORRALES, FJ
    FERSHT, AR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (12) : 5326 - 5330
  • [8] THE GROES AND GROEL HEAT-SHOCK GENE-PRODUCTS OF ESCHERICHIA-COLI ARE ESSENTIAL FOR BACTERIAL-GROWTH AT ALL TEMPERATURES
    FAYET, O
    ZIEGELHOFFER, T
    GEORGOPOULOS, C
    [J]. JOURNAL OF BACTERIOLOGY, 1989, 171 (03) : 1379 - 1385
  • [9] RESIDUES IN CHAPERONIN GROEL REQUIRED FOR POLYPEPTIDE BINDING AND RELEASE
    FENTON, WA
    KASHI, Y
    FURTAK, K
    HORWICH, AL
    [J]. NATURE, 1994, 371 (6498) : 614 - 619
  • [10] FISHER MT, 1994, J BIOL CHEM, V269, P13629