Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates:: Making mesoporous MnO2 nanoarchitectures stable in acid electrolytes

被引:105
作者
Long, JW [1 ]
Rhodes, CP [1 ]
Young, AL [1 ]
Rolison, DR [1 ]
机构
[1] USN, Res Lab, Surface Chem Branch, Code 6170,4555 Overlook Ave SW, Washington, DC 20375 USA
关键词
D O I
10.1021/nl0343598
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have created hybrid organic-inorganic nanoarchitectures by electrodepositing ultrathin (<10-nm-thick) polymer coatings onto nanostructured MnO2 birnessite-type electrodes with surface areas in excess of 200 m(2) g(-1). By choosing a self-limited growth process, based on the electropolymerization of o-phenylenediamine, the resulting polymer conformally coats the oxide nanoscale network without disrupting the continuous mesoporosity of the initial MnO2 nanoarchitecture. These polymer coatings serve as pinhole-free physical barriers to external, acidic electrolyte, specifically, H2O and hydrated protons, and protect the underlying MnO2 nanoarchitecture from dissolution. The underlying metal oxide remains electrochemically addressable via an electrochemical proton-gating mechanism in which charge-compensating unsolvated protons are transported through the polymer coating. The 3D-templated electrochemical fabrication of polymer at an electrified metal oxide nanoarchitecture provides a new model for the development of electrochemical capacitors based on hybrid configurations using low-cost metal oxides such as MnO2.
引用
收藏
页码:1155 / 1161
页数:7
相关论文
共 51 条
[1]  
Anderson ML, 2002, NANO LETT, V2, P235, DOI 10.1021/n1015707d
[2]   Reductive dissolution of microparticulate manganese oxides [J].
Bakardjieva, S ;
Bezdicka, P ;
Grygar, T ;
Vorm, P .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2000, 4 (06) :306-313
[3]   DERIVATIVE LINEAR SWEEP AND DERIVATIVE CYCLIC VOLTABSORPTOMETRY [J].
BANCROFT, EE ;
SIDWELL, JS ;
BLOUNT, HN .
ANALYTICAL CHEMISTRY, 1981, 53 (09) :1390-1394
[4]   ELECTROCHEMICAL-BEHAVIOR OF MNO2 ELECTRODES IN SULFURIC-ACID-SOLUTIONS [J].
BODOARDO, S ;
BRENET, J ;
MAJA, M ;
SPINELLI, P .
ELECTROCHIMICA ACTA, 1994, 39 (13) :1999-2004
[5]   ION GATE ELECTRODES - POLYPYRROLE AS A SWITCHABLE ION CONDUCTOR MEMBRANE [J].
BURGMAYER, P ;
MURRAY, RW .
JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (12) :2515-2521
[6]   AN ION GATE MEMBRANE - ELECTROCHEMICAL CONTROL OF ION PERMEABILITY THROUGH A MEMBRANE WITH AN EMBEDDED ELECTRODE [J].
BURGMAYER, P ;
MURRAY, RW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1982, 104 (22) :6139-6140
[7]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[8]   OXYGEN-ELECTRODE .8. OXYGEN EVOLUTION AT RUTHENIUM DIOXIDE ANODES [J].
BURKE, LD ;
MURPHY, OJ ;
ONEILL, JF ;
VENKATESAN, S .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1977, 73 :1659-1671
[9]   STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF THE PROTON GAMMA-MNO2 SYSTEM [J].
CHABRE, Y ;
PANNETIER, J .
PROGRESS IN SOLID STATE CHEMISTRY, 1995, 23 (01) :1-130
[10]   ELECTROCHEMICAL PREPARATION OF A LADDER POLYMER CONTAINING PHENAZINE RINGS [J].
CHIBA, K ;
OHSAKA, T ;
OHNUKI, Y ;
OYAMA, N .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 219 (1-2) :117-124