Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3

被引:122
作者
Chung, MK
Güler, AD
Caterina, MJ
机构
[1] Johns Hopkins Sch Med, Dept Biol Chem, Baltimore, MD 21205 USA
[2] Johns Hopkins Sch Med, Dept Neurosci, Baltimore, MD 21205 USA
关键词
D O I
10.1074/jbc.M500596200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
2-Aminoethyl diphenylborinate was recently identified as a chemical activator of TRPV1, TRPV2, and TRPV3, three heat-gated members of the transient receptor potential vanilloid (TRPV) ion channel subfamily. Here we demonstrated that two structurally related compounds, diphenylboronic anhydride ( DPBA) and diphenyltetrahydrofuran (DPTHF), can also modulate the activity of these channels. DPBA acted as a TRPV3 agonist, whereas DPTHF exhibited prominent antagonistic activity. However, all three diphenyl-containing compounds promoted some degree of channel activation or potentiation, followed by channel block. Strong TRPV3 activation by DPBA often leads to the appearance of a secondary, enhanced, current phase. A similar biphasic response was observed during TRPV3 heat stimulation; an initial, gradually sensitizing phase (I-1) was followed by an abrupt transition to a secondary phase (I-2). I-2 was characterized by larger current amplitude, loss of outward rectification, and alterations in the following properties: permeability among cations; ruthenium red and DPTHF sensitivity; temperature dependence; and voltage-dependent gating. The I-1 to I-2 transition depended strongly on TRPV3 current density. Removal of extracellular divalent cations resulted in heat-evoked currents resembling I-2, whereas mutation of a putative Ca2+-binding residue in the pore loop domain, aspartate 641, facilitated detection of the I-1 to I-2 transition, suggesting that the conversion to I-2 resulted from the agonist- and time-dependent loss of divalent cationic inhibition. Primary keratinocytes overexpressing exogenous TRPV3 also exhibited biphasic agonist- evoked currents. Thus, strong activation by either chemical or thermal stimuli led to biphasic TRPV3 signaling behavior that may be associated with changes in the channel pore.
引用
收藏
页码:15928 / 15941
页数:14
相关论文
共 45 条
[1]   TRPV channels as temperature sensors [J].
Benham, CD ;
Gunthorpe, MJ ;
Davis, JB .
CELL CALCIUM, 2003, 33 (5-6) :479-487
[2]   cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation [J].
Bhave, G ;
Zhu, WG ;
Wang, HB ;
Brasier, DJ ;
Oxford, GS ;
Gereau, RW .
NEURON, 2002, 35 (04) :721-731
[3]   2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release [J].
Bootman, MD ;
Collins, TJ ;
Mackenzie, L ;
Roderick, HL ;
Berridge, MJ ;
Peppiatt, CM .
FASEB JOURNAL, 2002, 16 (10) :1145-1150
[4]   Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8 [J].
Brauchi, S ;
Orio, P ;
Latorre, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (43) :15494-15499
[5]   2-aminoethoxydiphenyl borane activates a novel calcium-permeable cation channel [J].
Braun, FJ ;
Aziz, O ;
Putney, JW .
MOLECULAR PHARMACOLOGY, 2003, 63 (06) :1304-1311
[6]   Stable activation of single Ca2+ release-activated Ca2+ channels in divalent cation-free solutions [J].
Braun, FJ ;
Broad, LM ;
Armstrong, DL ;
Putney, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (02) :1063-1070
[7]   Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry [J].
Broad, LM ;
Braun, FJ ;
Lievremont, JP ;
Bird, GSJ ;
Kurosaki, T ;
Putney, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (19) :15945-15952
[8]   The vanilloid receptor: A molecular gateway to the pain pathway [J].
Caterina, MJ ;
Julius, D .
ANNUAL REVIEW OF NEUROSCIENCE, 2001, 24 :487-517
[9]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[10]   A capsaicin-receptor homologue with a high threshold for noxious heat [J].
Caterina, MJ ;
Rosen, TA ;
Tominaga, M ;
Brake, AJ ;
Julius, D .
NATURE, 1999, 398 (6726) :436-441