High-resolution simultaneous three-photon fluorescence and third-Harmonic-generation microscopy

被引:46
作者
Chu, SW
Tai, SP
Ho, CL
Lin, CH
Sun, CK [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Electroopt Engn, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[3] Natl Yang Ming Univ, Inst Microbiol & Immunol, Taipei 112, Taiwan
关键词
three-photon excitation; laser scanning microscopy; nonlinear effect;
D O I
10.1002/jemt.20160
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
In recent years, nonlinear laser scanning microscopy has gained much attention due to its unique ability of deep optical sectioning. Based on our previous studies, a 1,2001,300-nm femtosecond laser can provide superior penetration capability with minimized photodamage possibility. However, with the longer wavelength excitation, three-photon-fluorescence (3PF) would be necessary for efficient use of intrinsic and extrinsic visible fluorophores. The three-photon process can provide much better spatial resolution than two-photon-fluorescence due to the cubic power dependency. On the other hand, third-harmonic-generation (THG), another intrinsic threephoton process, is interface-sensitive and can be used as a general structural imaging modality to show the exact location of cellular membranes. The virtual-transition characteristic of THG prevents any excess energy from releasing in bio-tissues and, thus, THG acts as a truly noninvasive imaging tool. Here we demonstrated the first combined 3PF and THG microscopy, which can provide three-dimensional high-resolution images with both functional molecule specificity and submicrometer structural mapping capability. The simultaneously acquired 3PF and THG images based on a 1,230-nm Cr:forsterite femtosecond laser are shown with a Hoechst-labeled hepatic cell sample. Strong 3PF around 450 nm from DNA-bounded Hoechst-33258 can be observed inside each nucleus while THG reveals the location of plasma membranes and other membrane-based organelles such as mitochondria. Considering that the maximum-allowable laser power in common nonlinear laser microscopy is less than 10 mW at 800 nm, it is remarkable that even with a 100-mW 1,230-nm incident power, there is no observable photo damage on the cells, demonstrating the noninvasiveness of this novel microscopy technique. (c) 2005 Wiley-Liss, Inc.
引用
收藏
页码:193 / 197
页数:5
相关论文
共 32 条
[1]   THE OPTICS OF HUMAN-SKIN [J].
ANDERSON, RR ;
PARRISH, JA .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1981, 77 (01) :13-19
[2]   Nonlinear scanning laser microscopy by third harmonic generation [J].
Barad, Y ;
Eisenberg, H ;
Horowitz, M ;
Silberberg, Y .
APPLIED PHYSICS LETTERS, 1997, 70 (08) :922-924
[3]   Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography [J].
Bouma, BE ;
Tearney, GJ ;
Bilinsky, IP ;
Golubovic, B ;
Fujimoto, JG .
OPTICS LETTERS, 1996, 21 (22) :1839-1841
[4]   Wavelength dependent damage in biological multi-photon confocal microscopy:: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources [J].
Chen, IH ;
Chu, SW ;
Sun, CK ;
Cheng, PC ;
Lin, BL .
OPTICAL AND QUANTUM ELECTRONICS, 2002, 34 (12) :1251-1266
[5]  
Cheng PC, 1998, J MICROSC-OXFORD, V189, P199, DOI 10.1046/j.1365-2818.1998.00277.x
[6]   In vivo developmental biology study using noninvasive multi-harmonic generation microscopy [J].
Chu, SW ;
Chen, SY ;
Tsai, TH ;
Liu, TM ;
Lin, CY ;
Tsai, HJ ;
Sun, CK .
OPTICS EXPRESS, 2003, 11 (23) :3093-3099
[7]   Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy [J].
Chu, SW ;
Chen, IH ;
Liu, TM ;
Sun, CK ;
Lee, SP ;
Lin, BL ;
Cheng, PC ;
Kuo, MX ;
Lin, DJ ;
Liu, HL .
JOURNAL OF MICROSCOPY-OXFORD, 2002, 208 (03) :190-200
[8]   Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser [J].
Chu, SW ;
Chen, IH ;
Liu, TM ;
Chen, PC ;
Sun, CK ;
Lin, BL .
OPTICS LETTERS, 2001, 26 (23) :1909-1911
[9]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[10]  
Du H, 1998, PHOTOCHEM PHOTOBIOL, V68, P141, DOI 10.1562/0031-8655(1998)068<0141:PACADA>2.3.CO