The production of ethanol from starch has been investigated in three genetically modified Saccharomyces cerevisiae strains (YPG/AB, YPG/MM, and YPB-G). Two of the three strains produce the Aspergillus awamori glucoamylase together with either the Bacillus subtilis (YPG/AB) or the mouse (YPG/MM) alpha-amylase as separately secreted polypeptides. YPB-G, on the other hand, secretes a bifunctional fusion, protein that contains both the B. subtilis alpha-amylase and the A. awamori glucoamylase activities. Substrate utilization, biomass growth, and ethanol production were all studied in both starch- and glucose-containing media. Much higher growth rates were found when any of the three strains were grown on glucose. YPG/AB showed the most efficient utilization of starch for ethanol production with the lowest levels of reducing sugars accumulating in the medium. The superior performance of YPG/AB as compared to YPB-G was found to correlate with its higher level of alpha-amylase activity. The ethanol production levels of YPG/AB in starch- and glucose-containing media were found to be comparable. YPB-G, which secretes the bifunctional fusion protein, could produce ethanol in media with starch concentrations above 100 g l(-1) while YPG/M(M) over dot did not produce ethanol from starch because of its negligible secretion of glucoamylase. (C) 1998 Elsevier Science Inc.