Post-processing accept-reject samples: Recycling and rescaling

被引:14
作者
Casella, G [1 ]
Robert, CP
机构
[1] Cornell Univ, Biometr Unit, Ithaca, NY 14850 USA
[2] INSEE, CREST, Stat Lab, F-92245 Malakoff, France
[3] Univ Rouen, F-92245 Malakoff, France
关键词
importance sampling; mean squared error; Metropolis-Hastings algorithm; Rao-Blackwellization;
D O I
10.2307/1390810
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes alternative methods for constructing estimators from accept-reject samples by incorporating the variables rejected by the algorithm, The resulting estimators are quick to compute, and turn out to be variations of importance sampling estimators, although their derivations are quite different. We show that these estimators are superior asymptotically to the classical accept-reject estimator, which ignores the rejected variables. In addition, we consider the issue of rescaling of estimators, a topic that has implications beyond accept-reject and importance sampling. We show how rescaling can improve an estimator and illustrate the domination of the standard importance sampling techniques in different setups.
引用
收藏
页码:139 / 157
页数:19
相关论文
共 13 条
[1]  
[Anonymous], 1979, Monte Carlo Methods, DOI DOI 10.1007/978-94-009-5819-7
[2]   Rao-Blackwellisation of sampling schemes [J].
Casella, G ;
Robert, CP .
BIOMETRIKA, 1996, 83 (01) :81-94
[3]  
Dagpunar J. S., 1978, Journal of Statistical Computation and Simulation, V8, P59, DOI 10.1080/00949657808810248
[4]  
DEVROYE L, 1985, NONUNIFORM RANDOM VA
[5]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[6]  
LIU JS, 1995, J ROY STAT SOC B MET, V57, P157
[7]   COVARIANCE STRUCTURE OF THE GIBBS SAMPLER WITH APPLICATIONS TO THE COMPARISONS OF ESTIMATORS AND AUGMENTATION SCHEMES [J].
LIU, JS ;
WONG, WH ;
KONG, A .
BIOMETRIKA, 1994, 81 (01) :27-40
[8]  
Mengersen K., 1996, BAYESIAN STAT, V5, P255
[9]  
PHILIPPE A, IN PRESS STAT COMPUT
[10]  
Ripley B.D., 1987, Stochastic Simulation