Podospora anserina is a filamentous fungus with a limited lifespan. After a strain-specific period of growth, cultures turn to senescence and ultimately die. Here we provide evidence that the last step in the ageing of P anserina is not accidental but programmed. In this study, PaAMID1, a homologue of a mammalian 'AIF-homologous mitochondrion-associated inducer of death', was analysed as a putative member of a caspase-independent signalling pathway. In addition, two metacaspases, PaMCA1 and PaMCA2, were investigated. While deletion of PaAmid1 as well as of PaMca2 was found to result in a moderate lifespan extension (59% and 78%, respectively), a 148% increase in lifespan was observed after deletion of PaMca1. Measurement of arginine-specific protease activity demonstrates a metacaspase-dependent activity in senescent but not in juvenile cultures, pointing to an activation of these proteases in the senescent stage of the life cycle. Moreover, treatment of juvenile wild-type cultures with hydrogen peroxide leads to a PaMCA1-dependent activity. The presented data strongly suggest that death of senescent wild-type cultures is triggered by an apoptotic programme induced by an age-dependent increase of reactive oxygen species during ageing of cultures and is executed after metacaspase activation.