MR imaging in the non-human primate: studies of function and of dynamic connectivity

被引:66
作者
Logothetis, NK [1 ]
机构
[1] Max Planck Inst Biol Cybernet, Dept Physiol Cognit Proc, D-72076 Tubingen, Germany
关键词
D O I
10.1016/j.conb.2003.09.017
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Since its early development in the late 1940s, nuclear magnetic resonance has become a powerful tool for applications ranging from chemical analysis or the study of the structure of solids to biomedical investigations. In the early 1990s the potential of this technique for functional brain mapping was demonstrated, causing unprecedented excitement in both basic and clinical neuroscience. It was shown that by using the appropriate pulse sequences the so-called functional magnetic resonance imaging (fMRI) technique can be made sensitive to local magnetic susceptibility alterations produced by changes in the concentration of deoxyhemoglobin in venous blood vessels. This blood-oxygenation-level-dependent (BOLD) contrast mechanism was successfully implemented in awake human subjects, in small animals, and recently in the non-human primate - the experimental animal of choice for the study of cognitive behavior. Simultaneous imaging and electrode recordings promise new insights into the mechanisms by which large-scale networks in the brain contribute to the local neural activity recorded at a given cortical site. Moreover, the use of MRI-visible tracers and of electrical microstimulation applied during imaging proves to be ideal for the study of connectivity in the living animal.
引用
收藏
页码:630 / 642
页数:13
相关论文
共 83 条
[1]   CNS energy metabolism as related to function [J].
Ames, A .
BRAIN RESEARCH REVIEWS, 2000, 34 (1-2) :42-68
[2]   The neural basis of functional brain imaging signals [J].
Attwell, D ;
Iadecola, C .
TRENDS IN NEUROSCIENCES, 2002, 25 (12) :621-625
[3]   An energy budget for signaling in the grey matter of the brain [J].
Attwell, D ;
Laughlin, SB .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (10) :1133-1145
[4]   TIME COURSE EPI OF HUMAN BRAIN-FUNCTION DURING TASK ACTIVATION [J].
BANDETTINI, PA ;
WONG, EC ;
HINKS, RS ;
TIKOFSKY, RS ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1992, 25 (02) :390-397
[5]  
Bonhoeffer Tobias, 1996, P55
[6]   THE INTRAVASCULAR CONTRIBUTION TO FMRI SIGNAL CHANGE - MONTE-CARLO MODELING AND DIFFUSION-WEIGHTED STUDIES IN-VIVO [J].
BOXERMAN, JL ;
BANDETTINI, PA ;
KWONG, KK ;
BAKER, JR ;
DAVIS, TL ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (01) :4-10
[7]  
Brewer AA, 2002, J NEUROSCI, V22, P10416
[8]  
BUZSAKI G, 1988, J NEUROSCI, V8, P4007
[9]   VISUAL PROPERTIES OF NEURONS IN AREA V4 OF THE MACAQUE - SENSITIVITY TO STIMULUS FORM [J].
DESIMONE, R ;
SCHEIN, SJ .
JOURNAL OF NEUROPHYSIOLOGY, 1987, 57 (03) :835-868
[10]   A FUNCTIONAL MICROCIRCUIT FOR CAT VISUAL-CORTEX [J].
DOUGLAS, RJ ;
MARTIN, KAC .
JOURNAL OF PHYSIOLOGY-LONDON, 1991, 440 :735-769