A Simple QM/MM Approach for Capturing Polarization Effects in Protein-Ligand Binding Free Energy Calculations

被引:86
作者
Beierlein, Frank R. [1 ]
Michel, Julien [1 ]
Essex, Jonathan W. [1 ]
机构
[1] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England
基金
英国生物技术与生命科学研究理事会;
关键词
MOLECULAR-ORBITAL CALCULATIONS; QUANTUM-MECHANICAL CALCULATIONS; MONTE-CARLO SIMULATIONS; HYDRATION FREE-ENERGY; GAUSSIAN-BASIS SETS; PERTURBATION CALCULATIONS; NONNUCLEOSIDE INHIBITORS; EFFICIENT GENERATION; ELECTRONIC-STRUCTURE; ENZYMATIC-REACTIONS;
D O I
10.1021/jp109054j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a molecular simulation protocol to compute free energies of binding, which combines a QM/MM correction term with rigorous classical free energy techniques, thereby accounting for electronic polarization effects. Relative free energies of binding are first computed using classical force fields, Monte Carlo sampling, and replica exchange thermodynamic integration. Snapshots of the configurations at the end points of the perturbation are then subjected to DFT-QM/MM single-point calculations using the B3LYP functional and a range of basis sets. The resulting quantum mechanical energies are then processed using the Zwanzig equation to give free energies incorporating electronic polarization. Our approach is conceptually simple and does not require tightly coupled QM and MM software. The method has been validated by calculating the relative free energies of hydration of methane and water and the relative free energy of binding of two inhibitors of cyclooxygenase-2. Closed thermodynamic cycles are obtained across different pathways, demonstrating the correctness of the technique, although significantly more sampling is required for the protein-ligand system. Our method offers a simple and effective way to incorporate quantum mechanical effects into computed free energies of binding.
引用
收藏
页码:4911 / 4926
页数:16
相关论文
共 101 条
[1]   Molecular dynamics study of the stability of methane structure H clathrate hydrates [J].
Alavi, Saman ;
Ripmeester, J. A. ;
Klug, D. D. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (12)
[2]   SIMULATION OF ENZYME-REACTIONS USING VALENCE-BOND FORCE-FIELDS AND OTHER HYBRID QUANTUM-CLASSICAL APPROACHES [J].
AQVIST, J ;
WARSHEL, A .
CHEMICAL REVIEWS, 1993, 93 (07) :2523-2544
[3]   Accelerating quantum mechanical/molecular mechanical sampling using pure molecular mechanical potential as an importance function: The case of effective fragment potential [J].
Bandyopadhyay, P .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (09)
[4]   Electronic structure of compound I in human isoforms of cytochrome P450 from QM/MM modeling [J].
Bathelt, CM ;
Zurek, J ;
Mulholland, AJ ;
Harvey, JN .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (37) :12900-12908
[5]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[6]  
Beierlein F, 2004, HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, MUNICH 2003, P245
[7]   Quantum mechanical/molecular mechanical (QM/MM) docking:: an evaluation for known test systems [J].
Beierlein, F ;
Lanig, H ;
Schürer, G ;
Horn, AHC ;
Clark, T .
MOLECULAR PHYSICS, 2003, 101 (15) :2469-2480
[8]   Simulating FRET from tryptophan: Is the rotamer model correct? [J].
Beierlein, FR ;
Othersen, OG ;
Lanig, H ;
Schneider, S ;
Clark, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (15) :5142-5152
[9]   Hybrid ab initio quantum mechanics molecular mechanics calculations of free energy surfaces for enzymatic reactions:: The nucleophilic attack in subtilisin [J].
Bentzien, J ;
Muller, RP ;
Florián, J ;
Warshel, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (12) :2293-2301
[10]   COMPACT CONTRACTED BASIS-SETS FOR 3RD-ROW ATOMS - GA-KR [J].
BINNING, RC ;
CURTISS, LA .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (10) :1206-1216