Overexpression of p16INK4A and p14ARF in haematological malignancies

被引:14
作者
Lee, YK [1 ]
Park, JY [1 ]
Kang, HJ [1 ]
Cho, HC [1 ]
机构
[1] Hallym Univ, Coll Med, Dept Lab Med, Anyang 431070, Gyeonggi Do, South Korea
来源
CLINICAL AND LABORATORY HAEMATOLOGY | 2003年 / 25卷 / 04期
关键词
tumour suppressor; p16(INK4A); p14(ARF); haematological malignancy; chronic myelogenous leukaemia;
D O I
10.1046/j.1365-2257.2003.00520.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Two proteins, p16(INK4A) and p14(ARF) , originating from the same gene locus CDKN2A , use different promoters and alternative reading frames. p16(INK4A) is translated from alpha transcript and p14(ARF) is from beta transcript. These two proteins, which are inactivated in some human malignancies, are possible tumour suppressor candidates. In this study, we investigated the expression of p16(INK4A) and p14(ARF) mRNAs in haematological malignancies. We studied eight normal bone marrow samples, three reactive granulocytic hyperplasia patients, and 21 haematological malignancy patients, including seven acute myelogenous leukaemia, four acute lymphoblastic leukaemia, five myelodysplastic syndrome, five chronic myelogenous leukaemia (CML). p16(INK4A) and p14(ARF) mRNA expression was assayed by reverse transcriptase polymerase chain reaction. Normal bone marrows and reactive granulocytic hyperplasia showed barely detectable expression of either mRNA. In contrast, p16(INK4A) and p14(ARF) mRNA expression was abnormally increased in patients with haematological malignancies. Especially in CML, overexpression of p16(INK4A) and p14(ARF) mRNAs was more frequent than in controls (80 and 60%, respectively, P < 0.05). In conclusion, p16(INK4A) and p14(ARF) mRNA expression was frequently increased in haematological malignancies, especially in CML. We suggest that overexpression of these mRNAs may be related to the pathogenesis of haematological malignancies.
引用
收藏
页码:233 / 237
页数:5
相关论文
共 21 条
[1]   Alterations of P53 and RB genes and the evolution of the accelerated phase of chronic myeloid leukemia [J].
Beck, Z ;
Kiss, A ;
Tóth, FD ;
Szabó, J ;
Bácsi, A ;
Balogh, E ;
Borbély, A ;
Telek, B ;
Kovács, E ;
Oláh, É ;
Rak, K .
LEUKEMIA & LYMPHOMA, 2000, 38 (5-6) :587-597
[2]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[3]   The CDKN2A tumor-suppressor locus -: A tale of two proteins [J].
Clurman, BE ;
Groudine, M .
NEW ENGLAND JOURNAL OF MEDICINE, 1998, 338 (13) :910-912
[4]  
Di Bacco A, 2000, Oncologist, V5, P405, DOI 10.1634/theoncologist.5-5-405
[5]   Genomic alterations of the p19ARF encoding exons in T-cell acute lymphoblastic leukemia [J].
Gardie, B ;
Cayuela, JM ;
Martini, S ;
Sigaux, F .
BLOOD, 1998, 91 (03) :1016-1020
[6]   Alterations of the p16-pRb pathway and the chromosome locus 9p21-22 in non-small-cell lung carcinomas - Relationship with p53 and MDM2 protein expression [J].
Gorgoulis, VG ;
Zacharatos, P ;
Kotsinas, A ;
Liloglou, T ;
Kyroudi, A ;
Veslemes, M ;
Rassidakis, A ;
Halazonetis, TD ;
Field, JK ;
Kittas, C .
AMERICAN JOURNAL OF PATHOLOGY, 1998, 153 (06) :1749-1765
[7]  
Hara E, 1996, MOL CELL BIOL, V16, P859
[8]   GERMLINE P16 MUTATIONS IN FAMILIAL MELANOMA [J].
HUSSUSSIAN, CJ ;
STRUEWING, JP ;
GOLDSTEIN, AM ;
HIGGINS, PAT ;
ALLY, DS ;
SHEAHAN, MD ;
CLARK, WH ;
TUCKER, MA ;
DRACOPOLI, NC .
NATURE GENETICS, 1994, 8 (01) :15-21
[9]   The t(8;21) fusion protein, AML1-ETO, specifically represses the transcription of the p14ARF tumor suppressor in acute myeloid leukemia [J].
Linggi, B ;
Müller-Tidow, C ;
van de Locht, L ;
Hu, M ;
Nip, J ;
Serve, H ;
Berdel, WE ;
van der Reijden, B ;
Quelle, DE ;
Rowley, JD ;
Cleveland, J ;
Jansen, JH ;
Pandolfi, PP ;
Hiebert, SW .
NATURE MEDICINE, 2002, 8 (07) :743-750
[10]  
MAO L, 1995, CANCER RES, V55, P2995