External TEA block of shaker K+ channels is coupled to the movement of K+ ions within the selectivity filter

被引:31
作者
Thompson, J [1 ]
Begenisich, T [1 ]
机构
[1] Univ Rochester, Med Ctr, Dept Pharmacol & Physiol, Rochester, NY 14642 USA
关键词
K+ channels; ion permeation; tetraethylammonium; rubidium;
D O I
10.1085/jgp.200308848
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Recent molecular dynamic simulations and electrostatic calculations suggested that the external TEA binding site in K+ channels is outside the membrane electric field. However, it has been known for some time that external TEA block of Shaker K+ channels is voltage dependent. To reconcile these two results, we reexamined the voltage dependence of block of Shaker K+ channels by external TEA. We found that the voltage dependence of TEA block all but disappeared in solutions in which K+ ions were replaced by Rb+. These and other results with various concentrations of internal K+ and Rb+ ions suggest that the external TEA binding site is not within the membrane electric field and that the voltage dependence of TEA block in K+ solutions arises through a coupling with the movement of K+ ions through part of the membrane electric field. Our results suggest that external TEA block is coupled to two opposing voltage-dependent movements of K+ ions in the pore: (a) an inward shift of the average position of ions in the selectivity filter equivalent to a single ion moving similar to37% into the pore from the external surface; and (b) a movement of internal K+ ions into a vestibule binding site located similar to13% into the membrane electric field measured from the internal surface. The minimal voltage dependence of external TEA block in Rb+ solutions results from a minimal occupancy of the vestibule site by Rb+ ions and because the energy profile of the selectivity filter favors a more inward distribution of Rb+ occupancy.
引用
收藏
页码:239 / 246
页数:8
相关论文
共 24 条
[1]   TIME COURSE OF TEA+-INDUCED ANOMALOUS RECTIFICATION IN SQUID GIANT AXONS [J].
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1966, 50 (02) :491-+
[2]   INNER QUATERNARY AMMONIUM ION RECEPTOR IN POTASSIUM CHANNELS OF NODE OF RANVIER [J].
ARMSTRONG, CM ;
HILLE, B .
JOURNAL OF GENERAL PHYSIOLOGY, 1972, 59 (04) :388-+
[3]   Two functionally distinct subsites for the binding of internal blockers to the pore of voltage-activated K+ channels [J].
Baukrowitz, T ;
Yellen, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13357-13361
[4]   Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel [J].
Baukrowitz, T ;
Yellen, G .
SCIENCE, 1996, 271 (5249) :653-656
[5]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[6]   Extracellular blockade of K+ channels by TEA:: Results from molecular dynamics simulations of the KcsA channel [J].
Crouzy, S ;
Bernèche, S ;
Roux, B .
JOURNAL OF GENERAL PHYSIOLOGY, 2001, 118 (02) :207-217
[7]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[8]  
GOLDIN AL, 1992, METHOD ENZYMOL, V207, P266
[9]   Molecular basis for different pore properties of potassium channels from the rat brain Kv1 gene family [J].
GomezHernandez, JM ;
Lorra, C ;
Pardo, LA ;
Stuhmer, W ;
Pongs, O ;
Heinemann, SH ;
Elliott, AA .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1997, 434 (06) :661-668
[10]   THE AROMATIC BINDING-SITE FOR TETRAETHYLAMMONIUM ION ON POTASSIUM CHANNELS [J].
HEGINBOTHAM, L ;
MACKINNON, R .
NEURON, 1992, 8 (03) :483-491