Comprehensive structure-function analysis of the core domain of human telomerase RNA

被引:74
作者
Ly, H
Blackburn, EH
Parslow, TG
机构
[1] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Immunol & Microbiol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
关键词
D O I
10.1128/MCB.23.19.6849-6856.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Telomerase is a cellular reverse transcriptase that uses part of its integral RNA (called TER) as the template to synthesize telomeric DNA repeats. Vertebrate TERs are thought to share a conserved, highly structured core domain that includes the templating sequence and a pseudoknot, but not all features of the predicted core structure have been verified directly or shown to affect telomerase enzymatic activity. Here, we report a systematic mutational analysis of the core domain (residues 1 to 210) of human telomerase RNA (hTER). Our data confirm that optimal hTER activity requires the integrity of four short helices (P2a.1, P2a, P2b, and P3) which create the proposed pseudoknot and that features of both the primary sequence and secondary structure in P2b and P3 contribute to optimal function. At least part of the long-range P1 pairing is also required, despite the lack of a known P1 counterpart in rodent TERs. Among the predicted single-stranded regions, we found that J2b/3, portions of J2a/3, and residues in and around the template make sequence-specific contributions to telomerase function. Additionally, we provide evidence that naturally occurring hTER sequence polymorphisms found in some patients with aplastic anemia can inhibit telomerase activity by disrupting critical structures within the hTER core domain.
引用
收藏
页码:6849 / 6856
页数:8
相关论文
共 30 条
[1]   Analysis of the structure of human telomerase RNA in vivo [J].
Antal, M ;
Boros, É ;
Solymosy, F ;
Kiss, T .
NUCLEIC ACIDS RESEARCH, 2002, 30 (04) :912-920
[2]   Reconstitution of human telomerase activity and identification of a minimal functional region of the human telomerase RNA [J].
Autexier, C ;
Pruzan, R ;
Funk, WD ;
Greider, CW .
EMBO JOURNAL, 1996, 15 (21) :5928-5935
[3]   Human telomerase RNA-protein interactions [J].
Bachand, F ;
Triki, F ;
Autexier, C .
NUCLEIC ACIDS RESEARCH, 2001, 29 (16) :3385-3393
[4]   Functional regions of human telomerase reverse transcriptase and human telomerase RNA required for telomerase activity and RNA-protein interactions [J].
Bachand, F ;
Autexier, C .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (05) :1888-1897
[5]   Reconstitution of human telomerase activity in vitro [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
CURRENT BIOLOGY, 1998, 8 (03) :177-180
[6]   Functional multimerization of the human telomerase reverse transcriptase [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (18) :6151-6160
[7]   Switching and signaling at the telomere [J].
Blackburn, EH .
CELL, 2001, 106 (06) :661-673
[8]   Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines [J].
Bryan, TM ;
Englezou, A ;
DallaPozza, L ;
Dunham, MA ;
Reddel, RR .
NATURE MEDICINE, 1997, 3 (11) :1271-1274
[9]   Secondary structure of vertebrate telomerase RNA [J].
Chen, JL ;
Blasco, MA ;
Greider, CW .
CELL, 2000, 100 (05) :503-514
[10]   Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility [J].
Chen, JL ;
Greider, CW .
EMBO JOURNAL, 2003, 22 (02) :304-314