Interior-point gradient method for large-scale totally nonnegative least squares problems

被引:41
作者
Merritt, M [1 ]
Zhang, Y [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77251 USA
基金
美国国家科学基金会;
关键词
totally nonnegative least-squares problems; interior-point gradient methods;
D O I
10.1007/s10957-005-2668-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study an interior-point gradient method for solving a class of so-called totally nonnegative least-squares problems. At each iteration, the method decreases the residual norm along a diagonally-scaled negative gradient direction with a special scaling. We establish the global convergence of the method and present some numerical examples to compare the proposed method with a few similar methods including the affine scaling method.
引用
收藏
页码:191 / 202
页数:12
相关论文
共 7 条
[1]  
Dikin I.I., 1967, Soviet Mathematics Doklady, V8, P674
[2]   CONVEX PROGRAMMING IN HILBERT SPACE [J].
GOLDSTEIN, AA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1964, 70 (05) :709-&
[3]  
Lawson C.L., 1974, SOLVING LEAST SQUARE
[4]  
Lee DD, 2001, ADV NEUR IN, V13, P556
[5]  
Levitin E, 1966, Constrained minimization Phys., V6, P1, DOI DOI 10.1016/0041-5553(66)90114-5
[6]  
Wright S., 1997, Primal-dual interior-point methods
[7]  
ZHANG Y, 2004, TR0406 RIC U COMP AP