Effect of seeding duration on the strength of chondrocyte adhesion to articular cartilage

被引:37
作者
Schinagl, RM
Kurtis, MS
Ellis, KD
Chien, S
Sah, RL
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Orthopaed, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Inst Biomed Engn, La Jolla, CA 92093 USA
关键词
D O I
10.1002/jor.1100170118
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Chondrocyte adhesion to cartilage may play an important role in the repair of articular defects by maintaining cells in positions where their biosynthetic products can contribute to the repair process. The objective of this in vitro study was to determine the effect of the duration of seeding time on the ability of chondrocytes to resist detachment from cartilage when subjected to mechanical perturbation (fluid-induced shear stress). Suspensions of adult bovine articular chondrocytes were prepared from primary, high-density monolayer cultures and infused into a parallel-plate shear-flow chamber where they settled onto 50-mu m-thick sections of bovine articular cartilage at a density of approximately 20,000 cells/cm(2). The chondrocytes were seeded and allowed to attach to the cartilage surface for specific durations (5-40 minutes) in medium including 10% serum at 22 degrees C, after which the cells were exposed to fluid flow induced shear stresses (6-90 Pa). The fraction of detached cells at each shear stress was calculated from microscopic images. Shear stress was applied for 1 minute because this length of time was sufficient to induce steady-state cell detachment. Increasing the duration of cell seeding led to a more firm attachment of chondrocytes to cartilage. After 9 minutes of seeding, 50% cell detachment was induced by gravitational force alone. After 40 minutes of seeding, 50% detachment required 26 Pa of shear stress. Extrapolation of the data to account for the effect of repeated applications of cell suspensions to an individual cartilage substrate indicated that for a freshly prepared cartilage section, 50% detachment was induced by gravity after 25 minutes of seeding and by 2.3 Pa of shear stress after 40 minutes of seeding. The increase in resistance to shear stress-induced cell detachment with increasing seeding duration suggests that it may be beneficial to allow chondrocytes to stabilize in the absence of applied load for some time after chondrocyte transplantation for cartilage repair in vivo.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 54 条
[1]  
AGUIAR DJ, 1997, T ORTHOP RES SOC, V22, P469
[2]   Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo [J].
Baragi, VM ;
Renkiewicz, RR ;
Qiu, LP ;
Brammer, D ;
Riley, JM ;
Sigler, RE ;
Frenkel, SR ;
Amin, A ;
Abramson, SB ;
Roessler, BJ .
OSTEOARTHRITIS AND CARTILAGE, 1997, 5 (04) :275-282
[3]   TRANSPLANTATION OF TRANSDUCED CHONDROCYTES PROTECTS ARTICULAR-CARTILAGE FROM INTERLEUKIN 1-INDUCED EXTRACELLULAR-MATRIX DEGRADATION [J].
BARAGI, VM ;
RENKIEWICZ, RR ;
JORDAN, H ;
BONADIO, J ;
HARTMAN, JW ;
ROESSLER, BJ .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (05) :2454-2460
[4]  
Ben-Yishay A, 1995, Tissue Eng, V1, P119, DOI 10.1089/ten.1995.1.119
[5]   Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model [J].
Breinan, HA ;
Minas, T ;
Hsu, HP ;
Nehrer, S ;
Sledge, CB ;
Spector, M .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1997, 79A (10) :1439-1451
[6]   TREATMENT OF DEEP CARTILAGE DEFECTS IN THE KNEE WITH AUTOLOGOUS CHONDROCYTE TRANSPLANTATION [J].
BRITTBERG, M ;
LINDAHL, A ;
NILSSON, A ;
OHLSSON, C ;
ISAKSSON, O ;
PETERSON, L .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (14) :889-895
[7]   Articular cartilage .2. Degeneration and osteoarthrosis, repair, regeneration, and transplantation [J].
Buckwalter, JA ;
Mankin, HJ .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1997, 79A (04) :612-632
[8]   Chondrocyte transplantation to articular cartilage explants in vitro [J].
Chen, AC ;
Nagrampa, JP ;
Schinagl, RM ;
Lottman, LM ;
Sah, RL .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1997, 15 (06) :791-802
[9]   Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear [J].
Das, P ;
Schurman, DJ ;
Smith, RL .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1997, 15 (01) :87-93
[10]   CARTILAGE PRODUCTION BY RABBIT ARTICULAR CHONDROCYTES ON POLYGLYCOLIC ACID SCAFFOLDS IN A CLOSED BIOREACTOR SYSTEM [J].
DUNKELMAN, NS ;
ZIMBER, MP ;
LEBARON, RG ;
PAVELEC, R ;
KWAN, M ;
PURCHIO, AF .
BIOTECHNOLOGY AND BIOENGINEERING, 1995, 46 (04) :299-305