Substrate-induced bandgap opening in epitaxial graphene

被引:2004
作者
Zhou, S. Y.
Gweon, G.-H.
Fedorov, A. V.
First, P. N.
De Heer, W. A.
Lee, D.-H.
Guinea, F.
Castro Neto, A. H.
Lanzara, A. [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Bekeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[6] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[7] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat2003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene has shown great application potential as the host material for next-generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is the lack of an energy gap in its electronic spectra. This, for example, prevents the use of graphene in making transistors. Although several proposals have been made to open a gap in graphene's electronic spectra, they all require complex engineering of the graphene layer. Here, we show that when graphene is epitaxially grown on SiC substrate, a gap of approximate to 0.26 eV is produced. This gap decreases as the sample thickness increases and eventually approaches zero when the number of layers exceeds four. We propose that the origin of this gap is the breaking of sublattice symmetry owing to the graphene-substrate interaction. We believe that our results highlight a promising direction for bandgap engineering of graphene.
引用
收藏
页码:770 / 775
页数:6
相关论文
共 29 条
[1]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Quasiparticle dynamics in graphene [J].
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
NATURE PHYSICS, 2007, 3 (01) :36-40
[4]  
BRAR V, 2007, ARXIVORGCONDMATABS07
[5]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[6]  
CASTRO EV, 2006, ARXIVORGABSCONDMAT06
[7]  
Dresselhaus MS, 2002, ADV PHYS, V51, P1, DOI [10.1080/00018730110113644, 10.1080/00018738100101367]
[8]   Initial stages of the Graphite-SiC(0001) interface formation studied by photoelectron Spectroscopy [J].
Emtsev, K. V. ;
Seyller, Th. ;
Speck, F. ;
Ley, L. ;
Stojanov, P. ;
Riley, J. D. ;
Leckey, R. G. C. .
SILICON CARBIDE AND RELATED MATERIALS 2006, 2007, 556-557 :525-+
[9]   Charge distribution and screening in layered graphene systems [J].
Guinea, F. .
PHYSICAL REVIEW B, 2007, 75 (23)
[10]   Revealing the hidden atom in graphite by low-temperature atomic force microscopy [J].
Hembacher, S ;
Giessibl, FJ ;
Mannhart, J ;
Quate, CF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (22) :12539-12542