Implosion hydrodynamics of fast ignition targets

被引:45
作者
Stephens, RB [1 ]
Hatchett, SP
Tabak, M
Stoeckl, C
Shiraga, H
Fujioka, S
Bonino, M
Nikroo, A
Petrasso, R
Sangster, TC
Smith, J
Tanaka, KA
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[4] Osaka Univ, Inst Laser Engn, Osaka 5650871, Japan
[5] MIT, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.1896952
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The fast ignition (FI) concept requires the generation of a compact, dense, pure fuel mass accessible to an external ignition source. The current base line FI target is a shell fitted with a reentrant cone extending to near its center. Conventional direct- or indirect-drive collapses the shell near the tip of the cone and then an ultraintense laser pulse focused to the inside cone tip generates high-energy electrons to ignite the dense fuel. A theoretical and experimental investigation was undertaken of the collapse of such targets, validating modeling, and exploring the trade-offs available, in such an asymmetric geometry, to optimize compaction of the fuel and maintain the integrity of the cone. The collapse is complex. Away from the cone, the shell collapses much as does a conventional implosion, generating a hot, low-density inner core. But because of the open side, hot plasma exhausts out toward the tip of the cone. This hot plasma is advantageous for implosion diagnostics; it can provide protons for angular dependent measurements of the shell wall, neutrons for temperature measurements, and self-emission for contamination measurements. But for FI it is a liability; the hot, low-density inner core impedes the compaction of the cold fuel, lowering the implosion/burn efficiency and the gain. Approaches to optimizing this shell design are discussed. (c) 2005 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 16 条
[1]   Hohlraum-driven high-convergence implosion experiments with multiple beam cones on the Omega laser facility [J].
Amendt, P ;
Turner, RE ;
Landen, OL .
PHYSICAL REVIEW LETTERS, 2002, 89 (16)
[2]   Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel [J].
Atzeni, S .
PHYSICS OF PLASMAS, 1999, 6 (08) :3316-3326
[3]  
Basov N. G., 1992, Journal of Soviet Laser Research, V13, P396, DOI 10.1007/BF01124892
[4]   Initial performance results of the OMEGA laser system [J].
Boehly, TR ;
Brown, DL ;
Craxton, RS ;
Keck, RL ;
Knauer, JP ;
Kelly, JH ;
Kessler, TJ ;
Kumpan, SA ;
Loucks, SJ ;
Letzring, SA ;
Marshall, FJ ;
McCrory, RL ;
Morse, SFB ;
Seka, W ;
Soures, JM ;
Verdon, CP .
OPTICS COMMUNICATIONS, 1997, 133 (1-6) :495-506
[5]  
BUREK AJ, 1983, DE83015439
[6]  
BURGINYON GA, 1992, P SOC PHOTO-OPT INS, V1736, P36
[7]  
HARTE JA, 1997, UCRLLR10582196
[8]   Nuclear fusion - Fast heating scalable to laser fusion ignition [J].
Kodama, R ;
Shiraga, H ;
Shigemori, K ;
Toyama, Y ;
Fujioka, S ;
Azechi, H ;
Fujita, H ;
Habara, H ;
Hall, T ;
Izawa, Y ;
Jitsuno, T ;
Kitagawa, Y ;
Krushelnick, KM ;
Lancaster, KL ;
Mima, K ;
Nagai, K ;
Nakai, M ;
Nishimura, H ;
Norimatsu, T ;
Norreys, PA ;
Sakabe, S ;
Tanaka, KA ;
Youssef, A ;
Zepf, M .
NATURE, 2002, 418 (6901) :933-934
[9]   Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition [J].
Kodama, R ;
Norreys, PA ;
Mima, K ;
Dangor, AE ;
Evans, RG ;
Fujita, H ;
Kitagawa, Y ;
Krushelnick, K ;
Miyakoshi, T ;
Miyanaga, N ;
Norimatsu, T ;
Rose, SJ ;
Shozaki, T ;
Shigemori, K ;
Sunahara, A ;
Tampo, M ;
Tanaka, KA ;
Toyama, Y ;
Yamanaka, Y ;
Zepf, M .
NATURE, 2001, 412 (6849) :798-802
[10]  
Lindl J. D., 1998, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive