RNA interference inhibition of Mus81 reduces mitotic recombination in human cells

被引:40
作者
Blais, V
Gao, H
Elwell, CA
Boddy, MN
Gaillard, PHL
Russell, P
McGowan, CH [1 ]
机构
[1] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1091/mbc.E03-08-0580
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mus81 is a highly conserved endonuclease with homology to the XPF subunit of the XPF-ERCC1 complex. In yeast Mus81 associates with a second subunit, Eme1 or Mms4, which is essential for endonuclease activity in vitro and for in vivo function. Human Mus81 binds to a homolog of fission yeast Eme1 in vitro and in vivo. We show that recombinant Mus81-Eme1 cleaves replication forks, 3' flap substrates, and Holliday junctions in vitro. By use of differentially tagged versions of Mus81 and Eme1, we find that Mus81 associates with Mus81 and that Eme1 associates with Eme1. Thus, complexes containing two or more Mus81-Eme1 units could function to coordinate substrate cleavage in vivo. Downregulation of Mus81 by RNA interference reduces mitotic recombination in human somatic cells. The recombination defect is rescued by expression of a bacterial Holliday junction resolvase. These data provide direct evidence for a role of Mus8-Eme1 in mitotic recombination in higher eukaryotes and support the hypothesis that Mus81-Eme1 resolves Holliday junctions in vivo.
引用
收藏
页码:552 / 562
页数:11
相关论文
共 42 条
[1]   Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories [J].
Aravind, L ;
Makarova, KS ;
Koonin, EV .
NUCLEIC ACIDS RESEARCH, 2000, 28 (18) :3417-3432
[2]   The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10 [J].
Bastin-Shanower, SA ;
Fricke, WM ;
Mullen, JR ;
Brill, SJ .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (10) :3487-3496
[3]   Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1 [J].
Boddy, MN ;
Lopez-Girona, A ;
Shanahan, P ;
Interthal, H ;
Heyer, WD ;
Russell, P .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (23) :8758-8766
[4]   Mus81-Eme1 are essential components of a Holliday junction resolvase [J].
Boddy, MN ;
Gaillard, PHL ;
McDonald, WH ;
Shanahan, P ;
Yates, JR ;
Russell, P .
CELL, 2001, 107 (04) :537-548
[5]   Substrate specificity of RusA resolvase reveals the DNA structures targeted by RuvAB and RecG in vivo [J].
Bolt, EL ;
Lloyd, RG .
MOLECULAR CELL, 2002, 10 (01) :187-198
[6]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[7]   Human Mus81-associated endonuclease cleaves holliday junctions in vitro [J].
Chen, XB ;
Melchionna, R ;
Denis, CM ;
Gaillard, PHL ;
Blasina, A ;
Van de Weyer, I ;
Boddy, MN ;
Russell, P ;
Vialard, J ;
McGowan, CH .
MOLECULAR CELL, 2001, 8 (05) :1117-1127
[8]   Identification and characterization of the human Mus81-Eme1 endonuclease [J].
Ciccia, A ;
Constantinou, A ;
West, SC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (27) :25172-25178
[9]   Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells [J].
Constantinou, A ;
Davies, AA ;
West, SC .
CELL, 2001, 104 (02) :259-268
[10]   Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest [J].
Constantinou, A ;
Tarsounas, M ;
Karow, JK ;
Brosh, RM ;
Bohr, VA ;
Hickson, ID ;
West, SC .
EMBO REPORTS, 2000, 1 (01) :80-84