A protein phosphorylation/dephosphorylation network regulates a plant potassium channel

被引:282
作者
Lee, Sung Chul [1 ]
Lan, Wen-Zhi [1 ]
Kim, Beom-Gi [1 ]
Li, Legong [1 ]
Cheong, Yong Hwa [1 ]
Pandey, Girdhar K. [1 ]
Lu, Guihua [1 ]
Buchanan, Bob B. [1 ]
Luan, Sheng [1 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
关键词
calcium sensor; protein kinase; protein phosphatase; signal transduction;
D O I
10.1073/pnas.0707912104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Potassium (K+) is an essential nutrient for plant growth and development. Plants often adapt to low K+ conditions by increasing their K+ uptake capability. Recent studies have led to the identification of a calcium signaling pathway that enables plants to act in this capacity. Calcium is linked to two calcineurin B-like calcium sensors (CBLs) and a target kinase (CBL-interacting protein kinase 23 or CIPK23) that, in turn, appears to phosphorylate and activate the potassium channel, Arabidopsis K+ transporter 1 (AKT1), responsible for K+ uptake in roots. Here, we report evidence that this regulatory mechanism is more elaborate than earlier envisaged. The recently described pathway is part of an extensive network whereby several CBLs interact with multiple CIPKs in the activation of the potassium channel, AKT1. The physical interactions among the CBL, CIPK, and AKT1 components provide a mechanism for specifying the members of the CBL and CIPK families functional in AKT1 regulation. The interaction between the CIPKs and AKT1 was found to involve the kinase domain of the CIPK component and the ankyrin repeat domain of the channel. Furthermore, we identified a 2C-type protein phosphatase that physically interacts and inactivates the AKT1 channel. These findings provide evidence that the calcium-sensitive CBL and CIPK families together with 2C-type protein phosphatases form a protein phoshporylation/dephosphorylation network that regulates the AKT1 channel for K+ transport in plants.
引用
收藏
页码:15959 / 15964
页数:6
相关论文
共 33 条
[1]   Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network [J].
Batistic, O ;
Kudla, J .
PLANTA, 2004, 219 (06) :915-924
[2]   Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress [J].
Becker, D ;
Hoth, S ;
Ache, P ;
Wenkel, S ;
Roelfsema, MRG ;
Meyerhoff, O ;
Hartung, W ;
Hedrich, R .
FEBS LETTERS, 2003, 554 (1-2) :119-126
[3]   CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis [J].
Cheong, YH ;
Kim, KN ;
Pandey, GK ;
Gupta, R ;
Grant, JJ ;
Luan, S .
PLANT CELL, 2003, 15 (08) :1833-1845
[4]  
CHEONG YH, IN PRESS PLANT J
[5]   Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA [J].
Chérel, I ;
Michard, E ;
Platet, N ;
Mouline, K ;
Alcon, C ;
Sentenac, H ;
Thibaud, JB .
PLANT CELL, 2002, 14 (05) :1133-1146
[6]   Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis [J].
D'Angelo, Cecilia ;
Weinl, Stefan ;
Batistic, Oliver ;
Pandey, Girdhar K. ;
Cheong, Yong Hwa ;
Schueltke, Stefanie ;
Albrecht, Veronica ;
Ehlert, Britta ;
Schulz, Burkhard ;
Harter, Klaus ;
Luan, Sheng ;
Bock, Ralph ;
Kudla, Joerg .
PLANT JOURNAL, 2006, 48 (06) :857-872
[7]   Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain [J].
Daram, P ;
Urbach, S ;
Gaymard, F ;
Sentenac, H ;
Cherel, I .
EMBO JOURNAL, 1997, 16 (12) :3455-3463
[8]   Nonselective cation channels in plants [J].
Demidchik, V ;
Davenport, RJ ;
Tester, M .
ANNUAL REVIEW OF PLANT BIOLOGY, 2002, 53 :67-107
[9]   Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap [J].
Gaymard, F ;
Pilot, G ;
Lacombe, B ;
Bouchez, D ;
Bruneau, D ;
Boucherez, J ;
Michaux-Ferriére, N ;
Thibaud, JB ;
Sentenac, H .
CELL, 1998, 94 (05) :647-655
[10]   The SOS3 family of calcium sensors and SOS2 family of protein kinases in arabidopsis [J].
Gong, DM ;
Guo, Y ;
Schumaker, KS ;
Zhu, JK .
PLANT PHYSIOLOGY, 2004, 134 (03) :919-926