Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants

被引:157
作者
Kim, CY
Liu, YD
Thorne, ET
Yang, HP
Fukushige, H
Gassmann, W
Hildebrand, D
Sharp, RE
Zhang, SQ [1 ]
机构
[1] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Agron, Columbia, MO 65211 USA
[3] Univ Missouri, Dept Microbiol & Plant Pathol, Columbia, MO 65211 USA
关键词
D O I
10.1105/tpc.011411
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants under stress from both biotic and abiotic sources produce increased levels of ethylene, which is perceived by ethylene receptors and triggers cellular responses further downstream. Protein phosphorylation and dephosphorylation were implicated in the regulation of ethylene induction by stresses based on studies using protein kinase and phosphatase inhibitors. However, the kinase(s) involved remains to be determined. Using a conditional gain-of-function transgenic system, we demonstrate that the activation of SIPK, a tobacco mitogen-activated protein kinase (MAPK), by NtMEK2(DD), an active mutant of the upstream kinase of SIPK, resulted in a dramatic increase in ethylene production. The increase in ethylene after the activation of SIPK coincided with a dramatic increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) activity, which was followed by the activation of a subgroup of ACS and ACC oxidase (ACO) genes, suggesting that either the activation of unidentified ACS(s) or post-transcriptional regulation is involved. Infection with Tobacco mosaic virus (TMV), which is known to activate the SIPK cascade and induce ethylene biosynthesis, also induced the same ACSs and ACOs. After ethylene production in NtMEK2(DD) plants, strong activation of ETHYLENE-RESPONSE FACTOR (ERF) genes was observed, similar to the effect in NN tobacco plants infected with TMV. In contrast to previous reports, no major increase in jasmonic acid (JA) and methyl jasmonate (MJ) was detected after the activation of SIPK/WIPK in NtMEK2(DD) transgenic plants. These results suggest that the induction of ethylene but not JA/MJ is involved in plant defense responses mediated by the NtMEK2-SIPK/WIPK pathway.
引用
收藏
页码:2707 / 2718
页数:12
相关论文
共 58 条
[1]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[2]   STRUCTURE AND INDUCTION-PATTERN OF A NOVEL PROTEINASE-INHIBITOR CLASS-II GENE OF TOBACCO [J].
BALANDIN, T ;
VANDERDOES, C ;
ALBERT, JMB ;
BOL, JF ;
LINTHORST, HJM .
PLANT MOLECULAR BIOLOGY, 1995, 27 (06) :1197-1204
[3]   Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi [J].
Berrocal-Lobo, M ;
Molina, A ;
Solano, R .
PLANT JOURNAL, 2002, 29 (01) :23-32
[4]   Ethylene: A gaseous signal molecule in plants [J].
Bleecker, AB ;
Kende, H .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 :1-+
[5]   The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein [J].
Chae, HS ;
Faure, F ;
Kieber, JJ .
PLANT CELL, 2003, 15 (02) :545-559
[6]   The ethylene-response pathway: signal perception to gene regulation [J].
Chang, C ;
Shockey, JA .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (05) :352-358
[7]   Mammalian MAP kinase signalling cascades [J].
Chang, LF ;
Karin, M .
NATURE, 2001, 410 (6824) :37-40
[8]   Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins [J].
Chao, QM ;
Rothenberg, M ;
Solano, R ;
Roman, G ;
Terzaghi, W ;
Ecker, JR .
CELL, 1997, 89 (07) :1133-1144
[9]   Signal transduction by the JNK group of MAP kinases [J].
Davis, RJ .
CELL, 2000, 103 (02) :239-252
[10]  
DELAAT AMM, 1983, PHYSIOL PLANT PATHOL, V22, P261