Dynamical symmetries and Nambu mechanics

被引:62
作者
Chatterjee, R
机构
[1] Department of Physics, State Univ. New York at Stony Brook, Stony Brook
关键词
Nambu mechanics; Hamiltonian mechanics; SO(4) Kepler problem;
D O I
10.1007/BF00714375
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that several Hamiltonian systems possessing dynamical or hidden symmetries can be realized within the framework of Nambu's generalized mechanics. Among such systems are the SU(n)-isotropic harmonic oscillator and the SO(4) Kepler problem. As required by the formulation of Nambu dynamics, the integrals of motion for these systems necessarily become the so-called generalized Hamiltonians. Furthermore, in most of these problems, the definition of these generalized Hamiltonians is not unique.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 10 条
[1]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[2]  
ARNOLD VI, 1988, DYNAMICAL SYSTEMS, V3
[3]   REDUCTIONS OF SELF-DUAL YANG-MILLS FIELDS AND CLASSICAL-SYSTEMS [J].
CHAKRAVARTY, S ;
ABLOWITZ, MJ ;
CLARKSON, PA .
PHYSICAL REVIEW LETTERS, 1990, 65 (09) :1085-1087
[4]   GENERALIZED HAMILTONIAN DYNAMICS [J].
NAMBU, Y .
PHYSICAL REVIEW D, 1973, 7 (08) :2405-2412
[5]   NONEXISTENCE OF QUANTUM NAMBU MECHANICS [J].
SAHOO, D ;
VALSAKUMAR, MC .
MODERN PHYSICS LETTERS A, 1994, 9 (29) :2727-2732
[6]   NAMBU MECHANICS AND ITS QUANTIZATION [J].
SAHOO, D ;
VALSAKUMAR, MC .
PHYSICAL REVIEW A, 1992, 46 (07) :4410-4412
[7]   ON FOUNDATION OF THE GENERALIZED NAMBU MECHANICS [J].
TAKHTAJAN, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (02) :295-315
[8]  
TAKHTAJAN LA, 1991, PAM121 U COL PREPR
[9]  
TAKHTAJAN LA, 1990, INTRO QUANTUM GROUPS
[10]  
VAISMAN I, 1994, LECTURES GEOMETRY PO