Generalized Fourier-Feynman transforms and a first variation on function space

被引:60
作者
Chang, SJ [1 ]
Skoug, D
机构
[1] Dankook Univ, Dept Math, Cheonan 330714, South Korea
[2] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
关键词
generalized analytic Feynman integral; generalized analytic Fourier-Feynman transform; first variation; translation theorem; Cameron-Storvick type theorem;
D O I
10.1080/1065246031000074425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we use a generalized Brownian motion process to define a generalized Feynman integral and a generalized Fourier-Feynman transform. We establish a translation theorem and use it to express the generalized Feynman integral of the first variation of a functional F in terms of the generalized Feynman integral of F multiplied by a linear factor. We establish some integration by parts formulas for generalized Feynman integrals and transforms. We also find the generalized Fourier-Feynman transform of a functional F belonging to a Banach algebra (L-a,b(2) [0, T ]) after it has been multiplied by n linear factors; none of these linear factors belong to (L-a,b(2) [0, T ]). Finally we established some new generalized Feynman integration formulas.
引用
收藏
页码:375 / 393
页数:19
相关论文
共 20 条
[1]  
Brue M.D., 1972, THESIS U MINNESOTA M
[2]  
Cameron R.H., 1980, Lecture Notes in Math., V798, P18
[3]  
Cameron R. H., 1980, GAUSSIAN RANDOM FIEL, P144
[4]  
CAMERON RH, 1976, MICH MATH J, V23, P1
[5]  
CHANG JS, 1996, ROCKY MOUNTAIN J MAT, V26, P37
[6]  
Chang K. S., 1982, J KOREAN MATH SOC, V21, P61
[7]  
CHANG KS, 2000, J KOREAN MATH SOC, V38, P485
[8]   Translation theorems for Fourier-Feynman transforms and conditional Fourier-Feynman transforms [J].
Chang, SJ ;
Park, C ;
Skoug, D .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (02) :477-496
[9]  
CHANG SJ, 2000, PAN AM MATH J, V10, P25
[10]   Convolution and Fourier-Feynman transforms [J].
Huffman, T ;
Park, C ;
Skoug, D .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (03) :827-841