Starch-related α-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in arabidopsis

被引:112
作者
Yano, R
Nakamura, M
Yoneyama, T
Nishida, I [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Appl Biol Chem, Tokyo 1138657, Japan
关键词
D O I
10.1104/pp.104.056374
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cold- induced soluble sugar accumulation enhances the degree of freezing tolerance in various cold- hardy plants including Arabidopsis ( Arabidopsis thaliana), where soluble sugars accumulate in only a few hours at 2 degrees C. Hence, along with photosynthesis, starch degradation might play a significant role in cold- induced sugar accumulation and enhanced freezing tolerance. Starch- related alpha- glucan/ water dikinase ( EC 2.7.9.4), encoded by Arabidopsis STARCH EXCESS 1 ( SEX1), is hypothesized to regulate starch degradation in plastids by phosphorylating starch, thereby ensuring better accessibility by starch- degrading enzymes. Here, we show that Arabidopsis sex1 mutants, when incubated at 2 degrees C for 1 d, were unable to accumulate maltooligosaccharides or normal glucose and fructose levels. In addition, they displayed impaired freezing tolerance. After 7 d at 2 degrees C, sex1 mutants did not show any of the above abnormal phenotypes but displayed slightly higher leaf starch contents. The impaired freezing tolerance of sex1 mutants was restored by overexpression of wild- type SEX1 cDNA using the cauliflower mosaic virus 35S promoter. The results demonstrate a genetic link between the SEX1 locus and plant freezing tolerance, and show that starch degradation is important for enhanced freezing tolerance during an early phase of cold acclimation. However, induction of starch degradation was not accompanied by significant changes in a- glucan/ water dikinase activity in leaf extracts and preceded cold- induced augmentation of SEX1 transcripts. Therefore, we conclude that augmentation of SEX1 transcripts might be a homeostatic response to low temperature, and that starch degradation during an early phase of cold acclimation could be regulated by a component( s) of a starch degradation pathway( s) downstream of SEX1.
引用
收藏
页码:837 / 846
页数:10
相关论文
共 44 条
[1]  
[Anonymous], 1980, CHILLING FREEZING HI
[2]   MUTANTS OF ARABIDOPSIS WITH ALTERED REGULATION OF STARCH DEGRADATION [J].
CASPAR, T ;
LIN, TP ;
KAKEFUDA, G ;
BENBOW, L ;
PREISS, J ;
SOMERVILLE, C .
PLANT PHYSIOLOGY, 1991, 95 (04) :1181-1188
[3]   A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night [J].
Chia, T ;
Thorneycroft, D ;
Chapple, A ;
Messerli, G ;
Chen, J ;
Zeeman, SC ;
Smith, SM ;
Smith, AM .
PLANT JOURNAL, 2004, 37 (06) :853-863
[4]   ICE1:: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J].
Chinnusamy, V ;
Ohta, M ;
Kanrar, S ;
Lee, BH ;
Hong, XH ;
Agarwal, M ;
Zhu, JK .
GENES & DEVELOPMENT, 2003, 17 (08) :1043-1054
[5]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[6]   A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis [J].
Cook, D ;
Fowler, S ;
Fiehn, O ;
Thomashow, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (42) :15243-15248
[7]   A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis [J].
Critchley, JH ;
Zeeman, SC ;
Takaha, T ;
Smith, AM ;
Smith, SM .
PLANT JOURNAL, 2001, 26 (01) :89-100
[8]   Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway [J].
Fowler, S ;
Thomashow, MF .
PLANT CELL, 2002, 14 (08) :1675-1690
[9]   Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation [J].
Gilmour, SJ ;
Sebolt, AM ;
Salazar, MP ;
Everard, JD ;
Thomashow, MF .
PLANT PHYSIOLOGY, 2000, 124 (04) :1854-1865
[10]   ALTERED GENE-EXPRESSION DURING COLD-ACCLIMATION OF SPINACH [J].
GUY, CL ;
NIEMI, KJ ;
BRAMBL, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (11) :3673-3677