Gravity dual of 1+1 dimensional Bjorken expansion

被引:22
作者
Kajantie, K.
Louko, Jorma
Tahkokallio, T.
机构
[1] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[3] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
来源
PHYSICAL REVIEW D | 2007年 / 76卷 / 10期
关键词
D O I
10.1103/PhysRevD.76.106006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the application of AdS/CFT duality to longitudinal boost-invariant Bjorken expansion of QCD matter produced in ultrarelativistic heavy ion collisions. As the exact (1+4)-dimensional bulk solutions for the (1+3)-dimensional boundary theory are not known, we investigate in detail the (1+1)-dimensional boundary theory, where the bulk is AdS(3) gravity. We find an exact bulk solution, show that this solution describes part of the spinless Banados-Teitelboim-Zanelli black hole with the angular dimension unwrapped, and use the thermodynamics of the Banados-Teitelboim-Zanelli hole to recover the time-dependent temperature and entropy density on the boundary. After separating from the holographic energy-momentum tensor a vacuum contribution, given by the extremal black hole limit in the bulk, we find that the boundary fluid is an ideal gas in local thermal equilibrium. Including angular momentum in the bulk gives a boundary flow that is boost invariant but has a nonzero longitudinal velocity with respect to the Bjorken expansion.
引用
收藏
页数:11
相关论文
共 30 条
[1]   A spinning anti-de Sitter wormhole [J].
Åminneborg, S ;
Bengtsson, I ;
Holst, S .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (02) :363-382
[2]  
[Anonymous], 1964, Handbook of mathematical functions
[3]   Isolated and dynamical horizons and their applications [J].
Ashtekar A. ;
Krishnan B. .
Living Reviews in Relativity, 2004, 7 (1)
[4]   GEOMETRY OF THE 2+1 BLACK-HOLE [J].
BANADOS, M ;
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1993, 48 (04) :1506-1525
[5]   Conformal field theory interpretation of black hole quasinormal modes [J].
Birmingham, D ;
Sachs, I ;
Solodukhin, SN .
PHYSICAL REVIEW LETTERS, 2002, 88 (15) :4
[6]  
Birmingham D, 2001, PHYS REV D, V64, DOI 10.1103/PhysRevD.64.064024
[7]  
BIRRELL ND, 1982, QUANTUM CURVED SPACE
[8]   The (2+1)-dimensional black hole [J].
Carlip, S .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (12) :2853-2879
[9]   Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence [J].
de Haro, S ;
Skenderis, K ;
Solodukhin, SN .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (03) :595-622
[10]  
Ellis GFR., 2000, FLAT CURVED SPACE TI