Numerical instability in Rayleigh-Schrodinger quantum mechanics

被引:23
作者
Hai, WH [1 ]
Zhu, XW
Feng, M
Shi, L
Gao, KL
Fang, XM
Chong, GS
机构
[1] Hunan Normal Univ, Dept Phys, Changsha 410081, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
[3] Shaoyang Teachers Inst, Dept Phys, Hunan 422001, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 10期
关键词
D O I
10.1088/0305-4470/34/10/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The most physically interesting systems are not exactly solvable in quantum mechanics. For one-dimensional bound systems without exact solutions, we analytically and numerically find that the Rayleigh-Schrodinger perturbed series sensitively depends on an unsolvable integration, which leads to numerical instability in quantum mechanics. By using an exact formal solution of the non-homogeneous Schrodinger equation, we demonstrate the existence of analytically bound states and propose a simple scheme to truncate infinity so that the instability difficulty is avoided.
引用
收藏
页码:L79 / L87
页数:9
相关论文
共 20 条
[1]   NEW APPROACH TO PERTURBATION-THEORY [J].
AHARONOV, Y ;
AU, CK .
PHYSICAL REVIEW LETTERS, 1979, 42 (24) :1582-1585
[2]  
[Anonymous], 1965, PERTURBATION SPECTRA
[3]   Quantum mechanics II [J].
Born, M ;
Heisenberg, W ;
Jordan, P .
ZEITSCHRIFT FUR PHYSIK, 1926, 35 (8/9) :557-615
[4]  
DIRAC PAM, 1978, DIRECTIONS PHYSICS
[5]   Energy gaps of a trapped ion interacting with a laser field [J].
Hai, WH ;
Feng, M ;
Zhu, XW ;
Shi, L ;
Gao, KL ;
Fang, XM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (47) :8265-8273
[6]   Bound states of the perturbed Schrodinger systems [J].
Hai, WH .
CHINESE PHYSICS LETTERS, 1998, 15 (07) :472-474
[7]  
Hai WH, 1999, COMMUN THEOR PHYS, V31, P297
[8]  
HEISENBERG W, 1967, PHYS TODAY 0527
[9]   CONVERGENT STRONG-COUPLING EXPANSIONS FROM DIVERGENT WEAK-COUPLING PERTURBATION-THEORY [J].
JANKE, W ;
KLEINERT, H .
PHYSICAL REVIEW LETTERS, 1995, 75 (15) :2787-2791
[10]  
Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]