Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae

被引:130
作者
Barbier, G
Oesterhelt, C
Larson, MD
Halgren, RG
Wilkerson, C
Garavito, RM
Benning, C
Weber, APM [1 ]
机构
[1] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[3] Univ Potsdam, Inst Biochem & Biol, D-14476 Golm, Germany
关键词
D O I
10.1104/pp.104.051169
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Unicellular algae serve as models for the study and discovery of metabolic pathways, for the functional dissection of cell biological processes such as organellar division and cell motility, and for the identification of novel genes and gene functions. The recent completion of several algal genome sequences and expressed sequence tag collections and the establishment of nuclear and organellar transformation methods has opened the way for functional genomics approaches using algal model systems. The thermo-acidophilic unicellular red alga Galdieria sulphuraria represents a particularly interesting species for a genomics approach owing to its extraordinary metabolic versatility such as heterotrophic and mixotrophic growth on more than 50 different carbon sources and its adaptation to hot acidic environments. However, the ab initio prediction of genes required for unknown metabolic pathways from genome sequences is not trivial. A compelling strategy for gene identification is the comparison of similarly sized genomes of related organisms with different physiologies. Using this approach, candidate genes were identified that are critical to the metabolic versatility of Galdieria. Expressed sequence tags and high-throughput genomic sequence reads covering >70% of the G. sulphuraria genome were compared to the genome of the unicellular, obligate photoautotrophic red alga Cyanidioschyzon merolae. More than 30% of the Galdieria sequences did not relate to any of the Cyandioschyzon genes. A closer inspection of these sequences revealed a large number of membrane transporters and enzymes of carbohydrate metabolism that are unique to Galdieria. Based on these data, it is proposed that genes involved in the uptake of reduced carbon compounds and enzymes involved in their metabolism are crucial to the metabolic flexibility of G. sulphuraria.
引用
收藏
页码:460 / 474
页数:15
相关论文
共 106 条
  • [1] The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria:: an update
    Albertano, P
    Ciniglia, C
    Pinto, G
    Pollio, A
    [J]. HYDROBIOLOGIA, 2000, 433 (1-3) : 137 - 143
  • [2] Allen RD, 2002, INT REV CYTOL, V215, P351
  • [3] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [4] PURIFICATION AND CHARACTERIZATION OF AN ALKALINE AMYLOPULLULANASE WITH BOTH ALPHA-1,4 AND ALPHA-1,6 HYDROLYTIC ACTIVITY FROM ALKALOPHILIC BACILLUS SP KSM-1378
    ARA, K
    SAEKI, K
    IGARASHI, K
    TAKAIWA, M
    UEMURA, T
    HAGIHARA, H
    KAWAI, S
    ITO, S
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1995, 1243 (03): : 315 - 324
  • [5] From glycogen to amylopectin: A model for the biogenesis of the plant starch granule
    Ball, S
    Guan, HP
    James, M
    Myers, A
    Keeling, P
    Mouille, G
    Buleon, A
    Colonna, P
    Preiss, J
    [J]. CELL, 1996, 86 (03) : 349 - 352
  • [6] Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex
    Bell, W
    Sun, WN
    Hohmann, S
    Wera, S
    Reinders, A
    De Virgilio, C
    Wiemken, A
    Thevelein, JM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) : 33311 - 33319
  • [7] Brock TD, 1978, THERMOPHILIC MICROOR, P255
  • [8] High-level expression and purification of immunogenic recombinant SAG1 (P30) of Toxoplasma gondii in Escherichia coli
    Chen, XG
    Gong, Y
    Hua-Li
    Lun, ZR
    Fung, MC
    [J]. PROTEIN EXPRESSION AND PURIFICATION, 2001, 23 (01) : 33 - 37
  • [9] OENOTHERA CHLOROPLAST DNA POLYMORPHISMS ASSOCIATED WITH PLASTOME MUTATOR ACTIVITY
    CHIU, WL
    JOHNSON, EM
    KAPLAN, SA
    BLASKO, K
    SOKALSKI, MB
    WOLFSON, R
    SEARS, BB
    [J]. MOLECULAR & GENERAL GENETICS, 1990, 221 (01): : 59 - 64
  • [10] Hidden biodiversity of the extremophilic Cyanidiales red algae
    Ciniglia, C
    Yoon, HS
    Pollio, A
    Pinto, G
    Bhattacharya, D
    [J]. MOLECULAR ECOLOGY, 2004, 13 (07) : 1827 - 1838