A constitutive model for predicting the large deformation thermomechanical behavior of fluoropolymers

被引:58
作者
Bergström, JS
Hilbert, LB
机构
[1] Exponent Inc, Natick, MA 01760 USA
[2] Exponent Inc, Menlo Pk, CA 94025 USA
关键词
constitutive modeling; PTFE; fluoropolymer; finite element simulation; large strain; time-dependence; experiments;
D O I
10.1016/j.mechmat.2004.09.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a newly developed constitutive model for predicting the time and temperature-dependent mechanical behavior of fluoropolymers, including PTFE, PFA and FER The mathematical details of the theory and its connection with the underlying microstructure are presented together with aspects of its numerical implementation into large-strain finite element simulations. A set of uniaxial tension, uniaxial compression, hydrostatic compression, multi-cycle thermomechanical, and small sample punch (disk bend) tests were performed on glass fiber filled PTFE to evaluate the predictive capabilities of the model. The tests were performed using monotonic and cyclic load histories, at different deformation rates and temperatures. A direct comparison between the experimental data and the model predictions show that the constitutive theory accurately captures the material response. The model is also capable of predicting the influence of hydrostatic stress on both the deviatoric and volumetric flow rates, enabling accurate predictions of fluoropolymers with small amounts of porosity. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:899 / 913
页数:15
相关论文
共 17 条
[1]   EFFECTS OF STRAIN-RATE, TEMPERATURE AND THERMOMECHANICAL COUPLING ON THE FINITE STRAIN DEFORMATION OF GLASSY-POLYMERS [J].
ARRUDA, EM ;
BOYCE, MC ;
JAYACHANDRAN, R .
MECHANICS OF MATERIALS, 1995, 19 (2-3) :193-212
[2]   A 3-DIMENSIONAL CONSTITUTIVE MODEL FOR THE LARGE STRETCH BEHAVIOR OF RUBBER ELASTIC-MATERIALS [J].
ARRUDA, EM ;
BOYCE, MC .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1993, 41 (02) :389-412
[3]   Large strain time-dependent behavior of filled elastomers [J].
Bergström, JS ;
Boyce, MC .
MECHANICS OF MATERIALS, 2000, 32 (11) :627-644
[4]   Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model [J].
Bergström, JS ;
Rimnac, CM ;
Kurtz, SM .
BIOMATERIALS, 2003, 24 (08) :1365-1380
[5]   Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions [J].
Bergström, JS ;
Kurtz, SM ;
Rimnac, CM ;
Edidin, AA .
BIOMATERIALS, 2002, 23 (11) :2329-2343
[6]   Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues [J].
Bergström, JS ;
Boyce, MC .
MECHANICS OF MATERIALS, 2001, 33 (09) :523-530
[7]   Constitutive modeling of the large strain time-dependent behavior of elastomers [J].
Bergstrom, JS ;
Boyce, MC .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (05) :931-954
[8]   ON THE KINEMATICS OF FINITE STRAIN PLASTICITY [J].
BOYCE, MC ;
WEBER, GG ;
PARKS, DM .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1989, 37 (05) :647-665
[9]  
EBNESAJJAD S, 2000, FLUOROPLASTICS NON M, V1
[10]  
*HKS INC, 2002, ABAQUS PAWT RI VER 6