Blind Image Quality Assessment Using a General Regression Neural Network

被引:239
作者
Li, Chaofeng [1 ]
Bovik, Alan Conrad [2 ]
Wu, Xiaojun
机构
[1] Jiangnan Univ, Sch IoT Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2011年 / 22卷 / 05期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Entropy; general regression neural network; gradient; image quality assessment; no-reference; phase congruency; REFERENCE PSNR ESTIMATION; BLOCKING ARTIFACTS; FEATURE-EXTRACTION; CODING PSNR; PHASE; VIDEO; ENHANCEMENT; INFORMATION; STATISTICS; METRICS;
D O I
10.1109/TNN.2011.2120620
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a no-reference image quality assessment (QA) algorithm that deploys a general regression neural network (GRNN). The new algorithm is trained on and successfully assesses image quality, relative to human subjectivity, across a range of distortion types. The features deployed for QA include the mean value of phase congruency image, the entropy of phase congruency image, the entropy of the distorted image, and the gradient of the distorted image. Image quality estimation is accomplished by approximating the functional relationship between these features and subjective mean opinion scores using a GRNN. Our experimental results show that the new method accords closely with human subjective judgment.
引用
收藏
页码:793 / 799
页数:7
相关论文
共 67 条
[1]  
[Anonymous], J ELECT IMAG
[2]  
[Anonymous], 2003, AUST PATT REC SOC C, DOI [10.1177/0734242X0302100404, DOI 10.1177/0734242X0302100404]
[3]  
[Anonymous], 2010, P INT WORKSH VID PRO
[4]  
[Anonymous], 2000, Final report from the video quality experts group on the validation of objective models of video quality assessment
[5]  
AW BYK, 1992, LECT NOTES COMPUT SC, V588, P749
[6]   No-reference JPEG-image quality assessment using GAP-RBF [J].
Babu, R. Venkatesh ;
Suresh, S. ;
Perkis, Andrew .
SIGNAL PROCESSING, 2007, 87 (06) :1493-1503
[7]  
Bezalel E., 2005, P SPIE INT SOC OPT E, V5908, p59081K
[8]  
Bovik AC, 2001, INT CONF ACOUST SPEE, P1725, DOI 10.1109/ICASSP.2001.941272
[9]   No-reference image quality assessment based on DCT domain statistics [J].
Brandao, Tomas ;
Queluz, Maria Paula .
SIGNAL PROCESSING, 2008, 88 (04) :822-833
[10]   VSNR: A wavelet-based visual signal-to-noise ratio for natural images [J].
Chandler, Damon M. ;
Hemami, Sheila S. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (09) :2284-2298