Photocatalytic degradation and mineralization of commercial methamidophos in aqueous Titania suspension

被引:57
作者
Dai, Ke [1 ]
Peng, Tianyou [1 ]
Chen, Hao [2 ]
Zhang, Ruixue [2 ]
Zhangi, Youxiang [1 ]
机构
[1] Wuhan Univ, Dept Chem, Wuhan 430072, Peoples R China
[2] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Peoples R China
关键词
D O I
10.1021/es702268p
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The photocatalytic degradation of a commercial methamidophos (MAP) emulsion in aqueous suspension containing mesoporous titania (m-TiO2) nanoparticles under UV irradiation was investigated. The mineralization rate of MAP went up steadily as prolonging the irradiation time and reached ca. 95% after 4 h irradiation based on determination of the end-products (NO3-, PO43-, and SO42-) of MAP through IC analysis. Moreover, the degradation kinetics of MAP followed the first-order reaction and has been monitored through GC-PFPD analysis, which also showed that MAP and the organic solvent as well as additive in the pesticide emulsion can be degraded readily and simultaneously. Photodegradation intermediates derived from two different concentrations of MAP were detected by GC-MS technique. The experimental facts indicated that the photodegradation mechanism of MAP mainly involves electron transfer process and hydroxylation process, and the dominant mechanism for MAP degradation in the initial steps can be attributed to the electron transfer process, which resulted in the formation of all intermediates containing P species detected in the initial photodegradation stage.
引用
收藏
页码:1505 / 1510
页数:6
相关论文
共 35 条
[1]   H2O2/TiO2 photocatalytic oxidation of metol.: Identification of intermediates and reaction pathways [J].
Aceituno, M ;
Stalikas, CD ;
Lunar, L ;
Rubio, S ;
Pérez-Bendito, D .
WATER RESEARCH, 2002, 36 (14) :3582-3592
[2]   DEGRADATION OF ATRAZINE BY FENTONS REAGENT - CONDITION OPTIMIZATION AND PRODUCT QUANTIFICATION [J].
ARNOLD, SM ;
HICKEY, WJ ;
HARRIS, RF .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1995, 29 (08) :2083-2089
[3]   Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts.: Intermediates and mechanistic study [J].
Chen, CC ;
Lei, PX ;
Ji, HW ;
Ma, WH ;
Zhao, JC ;
Hidaka, H ;
Serpone, N .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (01) :329-337
[4]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[5]   Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles [J].
Dai, Ke ;
Chen, Hao ;
Peng, Tianyou ;
Ke, Dingning ;
Yi, Huabing .
CHEMOSPHERE, 2007, 69 (09) :1361-1367
[6]   Photocatalytic degradation of pesticide contaminants in water [J].
Devipriya, S ;
Yesodharan, S .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 86 (03) :309-348
[7]   Photodegradation of parathion in aqueous titanium dioxide and zero valent iron solutions in the presence of hydrogen peroxide [J].
Doong, RA ;
Chang, WH .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1998, 116 (03) :221-228
[8]   Photoassisted iron compound catalytic degradation of organophosphorous pesticides with hydrogen peroxide [J].
Doong, RA ;
Chang, WH .
CHEMOSPHERE, 1998, 37 (13) :2563-2572
[9]   Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide [J].
Doong, RA ;
Chang, WH .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1997, 107 (1-3) :239-244
[10]  
*ENV MON CTR CHIN, 1998, MON REP EC ENV SYST