Generating uniform random vectors

被引:8
作者
Asci, C [1 ]
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67010 Coppito, AQ, Italy
关键词
Finite state Markov chains; rates of convergence; congruential generators;
D O I
10.1023/A:1011155412481
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the rate of convergence of the Markov chain Xn+1 = AX(n) + b(n) mod p, where A is an integer matrix with nonzero integer eigenvalues and {b(n)} is a sequence of independent and identically distributed integer vectors. If lambda (i) not equal +/-1 for all eigrnvalues lambda (i) of A, then n = O((log p)(2)) steps are sufficient and n = O(log p) steps are necessary to hac e X, sampling from a nearly uniform distribution. Conversely, if A has the eigenvalue lambda (i) = +/-1, and lambdai not equal +/-1 for all i not equal 1, n = O(p(2)) steps are necessary and sufficient.
引用
收藏
页码:333 / 356
页数:24
相关论文
共 7 条
[1]   SHUFFLING CARDS AND STOPPING-TIMES [J].
ALDOUS, D ;
DIACONIS, P .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (05) :333-348
[2]  
[Anonymous], 1973, ART COMPUTER PROGRAM
[3]   RANDOM-WALKS ARISING IN RANDOM NUMBER GENERATION [J].
CHUNG, FRK ;
DIACONIS, P ;
GRAHAM, RL .
ANNALS OF PROBABILITY, 1987, 15 (03) :1148-1165
[4]   RANDOM-PROCESSES OF THE FORM XN+1=ANXN+BN (MOD P) [J].
HILDEBRAND, M .
ANNALS OF PROBABILITY, 1993, 21 (02) :710-720
[5]  
Hildebrand M., 1990, THESIS HARVARD U
[6]   CONVERGENCE-RATES FOR MARKOV-CHAINS [J].
ROSENTHAL, JS .
SIAM REVIEW, 1995, 37 (03) :387-405
[7]  
Serre J.-P., 1977, GTM, V42