Functional MRI and its applications to the clinical neurosciences

被引:38
作者
Detre, JA
Floyd, TF
机构
[1] Univ Penn, Dept Neurol, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Anesthesiol, Philadelphia, PA 19104 USA
关键词
functional magnetic resonance imaging; neuropsychiatric disorders; brain mapping;
D O I
10.1177/107385840100700110
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Functional magnetic resonance imaging (fMRI) is an emerging methodology for studying regional brain function in vivo at relatively high spatial and temporal resolution. Because MRI methods are comparatively inexpensive and entirely noninvasive, fMRI has rapidly become one of the most popular approaches for brain mapping in cognitive and systems neuroscience. There has also been great interest in using fMRI to assist in clinical diagnosis and management, with promising demonstrations of feasibility in a number of applications. Both resting and task-specific regional brain activity can be measured, primarily utilizing alterations in regional cerebral blood flow (CBF) as a surrogate marker for neural function. This article reviews the biophysical and physiological bases of fMRI and its applications to the clinical neurosciences, with particular attention to potential challenges of fMRI under pathophysiological conditions. Carefully controlled prospective evaluation of clinical fMRI in its various potential applications will be required for fMRI to be validated as a clinically useful tool. Because the technology for fMRI is widely available, its impact could be substantial.
引用
收藏
页码:64 / 79
页数:16
相关论文
共 123 条
[1]   The variability of human, BOLD hemodynamic responses [J].
Aguirre, GK ;
Zarahn, E ;
D'Esposito, M .
NEUROIMAGE, 1998, 8 (04) :360-369
[2]   Diffusion-weighted MRI for evaluation of acute stroke [J].
Albers, GW .
NEUROLOGY, 1998, 51 (03) :S47-S49
[3]   Multisection cerebral blood flow MR imaging with continuous arterial spin labeling [J].
Alsop, DC ;
Detre, JA .
RADIOLOGY, 1998, 208 (02) :410-416
[4]   Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow [J].
Alsop, DC ;
Detre, JA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1996, 16 (06) :1236-1249
[5]  
Alsop DC, 2000, ANN NEUROL, V47, P93, DOI 10.1002/1531-8249(200001)47:1<93::AID-ANA15>3.0.CO
[6]  
2-8
[7]  
[Anonymous], SEIZURE
[8]   Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: Findings and implications for clinical management [J].
Atlas, SW ;
Howard, RS ;
Maldjian, J ;
Alsop, D ;
Detre, JA ;
Listerud, J ;
DEsposito, M ;
Judy, KD ;
Zager, E ;
Stecker, M .
NEUROSURGERY, 1996, 38 (02) :329-337
[9]   Magnetic resonance imaging of acute stroke [J].
Baird, AE ;
Warach, S .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1998, 18 (06) :583-609
[10]   PROCESSING STRATEGIES FOR TIME-COURSE DATA SETS IN FUNCTIONAL MRI OF THE HUMAN BRAIN [J].
BANDETTINI, PA ;
JESMANOWICZ, A ;
WONG, EC ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (02) :161-173