Integrated pseudogene annotation for human chromosome 22: Evidence for transcription

被引:61
作者
Zheng, DY
Zhang, ZL
Harrison, PM
Karro, J
Carriero, N
Gerstein, M
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada
[3] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada
[4] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
关键词
chromosome; 22; pseudogene; transcription; microarray; CESCR;
D O I
10.1016/j.jmb.2005.02.072
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pseudogenes are inheritable genetic elements formally defined by two properties: their similarity to functioning genes and their presumed lack of activity. However, their precise characterization, particularly with respect to the latter quality, has proven elusive. An opportunity to explore this issue arises from the recent emergence of tiling-microarray data showing that intergenic regions (containing pseudogenes) are transcribed to a great degree. Here we focus on the transcriptional activity of pseudogenes on human chromosome 22. First, we integrated several sets of annotation to define a unified list of 525 pseudogenes on the chromosome. To characterize these further, we developed a comprehensive list of genomic features based on conservation in related organisms, expression evidence, and the presence of upstream regulatory sites. Of the 525 unified pseudogenes we could confidently classify 154 as processed and 49 as duplicated. Using data from tiling microarrays, especially from recent high-resolution oligonucleotide arrays, we found some evidence that up to a fifth of the 525 pseudogenes are potentially transcribed. Expressed sequence tags (EST) comparison further validated a number of these, and overall we found 17 pseudogenes with strong support for transcription. In particular, one of the pseudogenes with both EST and microarray evidence for transcription turned Out to be a duplicated pseudogene in the cat eye syndrome critical region. Although we could not identify a meaningful number of transcription factor-binding sites (based on chromatin immuno-precipitation-chip data) near pseudogenes, we did find that similar to 12% of the pseudogenes had upstream CpG islands. Finally, analysis of corresponding syntenic regions in the mouse, rat and chimp genomes indicates, as previously suggested, that pseudogenes are less conserved than genes, but more preserved than the intergenic background (all notation is available from http://www.pseudogene.org). (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 45
页数:19
相关论文
共 46 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Recent segmental duplications in the human genome [J].
Bailey, JA ;
Gu, ZP ;
Clark, RA ;
Reinert, K ;
Samonte, RV ;
Schwartz, S ;
Adams, MD ;
Myers, EW ;
Li, PW ;
Eichler, EE .
SCIENCE, 2002, 297 (5583) :1003-1007
[3]   Pseudogenes: Are they "Junk" or functional DNA? [J].
Balakirev, ES ;
Ayala, FJ .
ANNUAL REVIEW OF GENETICS, 2003, 37 :123-151
[4]   SNPs on human chromosomes 21 and 22 - analysis in terms of protein features and pseudogenes [J].
Balasubramanian, S ;
Harrison, P ;
Hegyi, H ;
Bertone, P ;
Luscombe, N ;
Echols, N ;
McGarvey, P ;
Zhang, ZL ;
Gerstein, M .
PHARMACOGENOMICS, 2002, 3 (03) :393-402
[5]   Ultraconserved elements in the human genome [J].
Bejerano, G ;
Pheasant, M ;
Makunin, I ;
Stephen, S ;
Kent, WJ ;
Mattick, JS ;
Haussler, D .
SCIENCE, 2004, 304 (5675) :1321-1325
[6]   Global identification of human transcribed sequences with genome tiling arrays [J].
Bertone, P ;
Stolc, V ;
Royce, TE ;
Rozowsky, JS ;
Urban, AE ;
Zhu, XW ;
Rinn, JL ;
Tongprasit, W ;
Samanta, M ;
Weissman, S ;
Gerstein, M ;
Snyder, M .
SCIENCE, 2004, 306 (5705) :2242-2246
[7]   An overview of ensembl [J].
Birney, E ;
Andrews, TD ;
Bevan, P ;
Caccamo, M ;
Chen, Y ;
Clarke, L ;
Coates, G ;
Cuff, J ;
Curwen, V ;
Cutts, T ;
Down, T ;
Eyras, E ;
Fernandez-Suarez, XM ;
Gane, P ;
Gibbins, B ;
Gilbert, J ;
Hammond, M ;
Hotz, HR ;
Iyer, V ;
Jekosch, K ;
Kahari, A ;
Kasprzyk, A ;
Keefe, D ;
Keenan, S ;
Lehvaslaiho, H ;
McVicker, G ;
Melsopp, C ;
Meidl, P ;
Mongin, E ;
Pettett, R ;
Potter, S ;
Proctor, G ;
Rae, M ;
Searle, S ;
Slater, G ;
Smedley, D ;
Smith, J ;
Spooner, W ;
Stabenau, A ;
Stalker, J ;
Storey, R ;
Ureta-Vidal, A ;
Woodwark, KC ;
Cameron, G ;
Durbin, R ;
Cox, A ;
Hubbard, T ;
Clamp, M .
GENOME RESEARCH, 2004, 14 (05) :925-928
[8]   Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs [J].
Cawley, S ;
Bekiranov, S ;
Ng, HH ;
Kapranov, P ;
Sekinger, EA ;
Kampa, D ;
Piccolboni, A ;
Sementchenko, V ;
Cheng, J ;
Williams, AJ ;
Wheeler, R ;
Wong, B ;
Drenkow, J ;
Yamanaka, M ;
Patel, S ;
Brubaker, S ;
Tammana, H ;
Helt, G ;
Struhl, K ;
Gingeras, TR .
CELL, 2004, 116 (04) :499-509
[9]   Finishing the euchromatic sequence of the human genome [J].
Collins, FS ;
Lander, ES ;
Rogers, J ;
Waterston, RH .
NATURE, 2004, 431 (7011) :931-945
[10]   Reevaluating human gene annotation: A second-generation analysis of chromosome 22 [J].
Collins, JE ;
Goward, ME ;
Cole, CG ;
Smink, LJ ;
Huckle, EJ ;
Knowles, S ;
Bye, JM ;
Beare, DM ;
Dunham, I .
GENOME RESEARCH, 2003, 13 (01) :27-36