Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not?

被引:313
作者
Roush, RT [1 ]
机构
[1] Univ Adelaide, Dept Crop Protect, Glen Osmond, SA 5064, Australia
关键词
Bacillus thuringiensis; insect resistance; Helicoverpa; cotton; corn borer; maize;
D O I
10.1098/rstb.1998.0330
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transgenic insect-resistant crops that express toxins from Bacillus thuringiensis (Bt) offer significant advantages to pest management, but are at risk of losing these advantages to the evolution of resistance in the targeted insect pests. All commercially available cultivars of these crops carry only a single Bt gene, and are particularly at risk where the targeted insect pests are not highly sensitive to the Bt toxin used. Under such circumstances, the most prudent method of avoiding resistance is to ensure that a large proportion of the pest population develops on non-transgenic 'refuge' hosts, generally of the crop itself. This has generated recommendations that 20% or more of the cotton and maize in any given area should be nontransgenic. This may be costly in terms of yields and may encourage further reliance on and resistance to pesticides. The use of two or more toxins in the same variety (pyramiding) can reduce the amount of refuge required to delay resistance for an extended period. Cross-resistance among the toxins appears to have been overestimated as a potential risk to the use of pyramids land pesticide mixtures) because cross-resistance is at least as important when toxicants are used independently. Far more critical is that there should be nearly 100% mortality of susceptible insects on the transgenic crops. The past failures of pesticide mixtures to manage resistance provide important lessons for the most efficacious deployment of multiple toxins in transgenic crops.
引用
收藏
页码:1777 / 1786
页数:10
相关论文
共 46 条
[1]  
[Anonymous], 1998, Now or never: Serious new plans to save a natural pest control
[2]  
Bennett J, 1997, ADV INSECT CONTROL R, P75
[3]  
Carozzi N. B., 1997, ADV INSECT CONTROL R
[4]   TACTICS FOR RESISTANCE MANAGEMENT USING MULTIPLE PESTICIDES [J].
COMINS, HN .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 1986, 16 (02) :129-148
[6]  
FELDMAN J, 1997, ADV INSECT CONTROL R, P49
[7]   FIELD-EVALUATION AND POTENTIAL ECOLOGICAL IMPACT OF TRANSGENIC COTTONS (GOSSYPIUM-HIRSUTUM) IN AUSTRALIA [J].
FITT, GP ;
MARES, CL ;
LLEWELLYN, DJ .
BIOCONTROL SCIENCE AND TECHNOLOGY, 1994, 4 (04) :535-548
[8]  
Georghiou G.P., 1990, PESTICIDE RESISTANCE, P183
[9]   Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology [J].
Gould, F .
ANNUAL REVIEW OF ENTOMOLOGY, 1998, 43 :701-726