Nonlinear sigma models in (1+2) dimensions and an infinite number of conserved currents

被引:9
作者
Fujii, K [1 ]
Suzuki, T
机构
[1] Yokohama City Univ, Dept Math, Yokohama, Kanagawa 236, Japan
[2] Waseda Univ, Dept Math, Tokyo 169, Japan
关键词
nonlinear sigma models; conserved currents;
D O I
10.1023/A:1007540225039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we treat nonlinear sigma models such as the CP1-model, QP(1)-model, etc. in 1 + 2 dimensions. For submodels of such models, we definitely construct an infinite number of nontrivial conserved currents. Our result is a generalization of the idea of Alvarez, Ferreira and Guillen.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 5 条
[1]  
ALVAREZ O, HEPTH9710147
[2]   SOLUTIONS OF A(INFINITY) TODA EQUATIONS BASED ON NONCOMPACT GROUP SU(1,1) AND INFINITE-DIMENSIONAL GRASSMANN MANIFOLDS [J].
FUJII, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (04) :1652-1665
[3]  
Jacobson N., 1979, Lie algebras
[4]  
Kac V.G, 1990, INFINITE DIMENSIONAL, Vthird, DOI DOI 10.1017/CBO9780511626234
[5]  
Zakrzewski W. J., 1989, LOW DIMENSIONAL SIGM