Analysis and forecast impact of the main humidity observing systems

被引:86
作者
Andersson, E. [1 ]
Holm, E. [1 ]
Bauer, P. [1 ]
Bejaars, A. [1 ]
Kelly, G. A. [1 ]
McNally, A. P. [1 ]
Simmons, A. J. [1 ]
Thepaut, J. -N. [1 ]
Tompkins, A. M. [1 ]
机构
[1] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
关键词
observing system experiments; humidity sounding data;
D O I
10.1002/qj.112
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The global analysis and forecast impact of observed humidity has been assessed by means of observing system experiments with the ECMWF 4D-Var data assimilation system. It is found that humidity data have a significant impact extending into the medium range (5-6 day forecasts), with a marked impact also on the wind and temperature fields. This contradicts some previous studies that have shown insignificant impact of humidity observations in general. The current, greater benefit of the humidity analysis may be due to improved model and data assimilation methods, and vastly increased availability of atmospheric moisture observations. The results show that each tested data type provides benefit to the analysis and forecast performance, which indicates that the humidity analysis is effective in extracting information from a wide variety of humidity observations. Data from the microwave sounding instruments (SSMI and AMSU-B) dominate the humidity analysis over the sea, whereas radiosondes, surface stations (SYNOP) and AMSU-B dominate over land. The infrared sounders (GOES, HIRS and AIRS) dominate in the upper troposphere, at 200-300 hPa. The lack of absolutely calibrated humidity data makes dealing with biases in observations and model one of the main issues for determining the global moisture distribution and a balanced hydrological cycle. In these experiments, SSMI adds water in the subtropical subsidence areas due to a bias with respect to the model. In several locations over land, radiosondes and SYNOP have opposite bias impacts in the boundary layer, resulting in local influence on precipitation when either dataset is withheld. The SYNOP data are biased wet and the radiosondes are biased dry with respect to the model. Copyright (C) 2007 Royal Meteorological Society.
引用
收藏
页码:1473 / 1485
页数:13
相关论文
共 58 条
[1]   Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system [J].
Andersson, E ;
Bauer, P ;
Beljaars, A ;
Chevallier, F ;
Hólm, E ;
Janisková, M ;
Kållberg, P ;
Kelly, G ;
Lopez, P ;
McNally, A ;
Moreau, E ;
Simmons, AJ ;
Thépaut, JN ;
Tompkins, AM .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2005, 86 (03) :387-+
[2]   USE OF CLOUD-CLEARED RADIANCES IN 3-DIMENSIONAL 4-DIMENSIONAL VARIATIONAL DATA ASSIMILATION [J].
ANDERSSON, E ;
PAILLEUX, J ;
THEPAUT, JN ;
EYRE, JR ;
MCNALLY, AP ;
KELLY, GA ;
COURTIER, P .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1994, 120 (517) :627-653
[3]   Diagnosis of background errors for radiances and other observable quantities in a variational data assimilation scheme, and the explanation of a case of poor convergence [J].
Andersson, E ;
Fisher, M ;
Munro, R ;
McNally, A .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2000, 126 (565) :1455-1472
[4]  
ANDERSSON E, 2004, P AMS S FOR WEATH CL
[5]  
ANDERSSON E, 2004, P 3 WMO WORKSH IMP V, P32
[6]  
BAUER P, 2002, P ECMWF GEWEX WORKSH, P167
[7]  
Bauer P, 2006, Q J ROY METEOR SOC, V132, P2307, DOI 10.1256/qj.06.07
[8]   Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. I: 1 D-Var [J].
Bauer, Peter ;
Lopez, Philippe ;
Benedetti, Angela ;
Salmond, Deborah ;
Moreau, Emmanuel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2006, 132 (620) :2277-2306
[9]  
Beljaars A. C. M., 2005, P ECMWF EUMETSAT WOR, P29
[10]  
BELJAARS ACM, 2002, P ECMWF GEWEX WORKSH, P191