Strategies for discovering and derisking covalent, irreversible enzyme inhibitors

被引:299
作者
Johnson, Douglas S. [1 ]
Weerapana, Eranthie [2 ,3 ]
Cravatt, Benjamin F. [2 ,3 ]
机构
[1] Pfizer Global Res & Dev, Groton, CT 06340 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Physiol Chem, La Jolla, CA 92037 USA
关键词
ACID AMIDE HYDROLASE; ACTIVITY-BASED PROBES; HISTONE DEACETYLASE COMPLEXES; CONTENT FUNCTIONAL PROTEOMICS; GAMMA-SECRETASE INHIBITORS; TARGET RESIDENCE TIME; ACTIVE-SITE SERINE; IN-VIVO; CLICK CHEMISTRY; DRUG DISCOVERY;
D O I
10.4155/FMC.10.21
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
This article presents several covalent inhibitors, including examples of successful drugs, as well as highly selective, irreversible inhibitors of emerging therapeutic targets, such as fatty acid amide hydolase. Covalent inhibitors have many desirable features, including increased biochemical efficiency of target disruption, less sensitivity toward pharmacokinetic parameters and increased duration of action that outlasts the pharmacokinetics of the compound. Safety concerns that must be mitigated include lack of specificity and the potential immunogenicity of protein-inhibitor adduct(s). Particular attention will be given to recent technologies, such as activity-based protein profiling, which allow one to define the proteome-wide selectivity patterns for covalent inhibitors in vitro and in vivo. For instance, any covalent inhibitor can, in principle, be modified with a 'clickable' tag to generate an activity probe that is almost indistinguishable from the original agent. These probes can be applied to any living system across a broad dose range to fully inventory their on and off targets. The substantial number of drugs on the market today that act by a covalent mechanism belies historical prejudices against the development of irreversibly acting therapeutic small molecules. Emerging proteomic technologies offer a means to systematically discriminate safe (selective) versus deleterious (nonselective) covalent inhibitors and thus should inspire their future design and development.
引用
收藏
页码:949 / 964
页数:16
相关论文
共 139 条
[1]   Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype [J].
Adam, GC ;
Sorensen, EJ ;
Cravatt, BF .
NATURE BIOTECHNOLOGY, 2002, 20 (08) :805-809
[2]   Profiling the specific reactivity of the proteome with non-directed activity-based probes [J].
Adam, GC ;
Cravatt, BF ;
Sorensen, EJ .
CHEMISTRY & BIOLOGY, 2001, 8 (01) :81-95
[3]   Enzymatic pathways that regulate endocannabinoid signaling in the nervous system [J].
Ahn, Kay ;
McKinney, Michele K. ;
Cravatt, Benjamin F. .
CHEMICAL REVIEWS, 2008, 108 (05) :1687-1707
[4]   Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders [J].
Ahn, Kay ;
Johnson, Douglas S. ;
Cravatt, Benjamin F. .
EXPERT OPINION ON DRUG DISCOVERY, 2009, 4 (07) :763-784
[5]   Discovery and Characterization of a Highly Selective FAAH Inhibitor that Reduces Inflammatory Pain [J].
Ahn, Kay ;
Johnson, Douglas S. ;
Mileni, Mauro ;
Beidler, David ;
Long, Jonathan Z. ;
McKinney, Michele K. ;
Weerapana, Eranthie ;
Sadagopan, Nalini ;
Liimatta, Marya ;
Smith, Sarah E. ;
Lazerwith, Scott ;
Stiff, Cory ;
Kamtekar, Satwik ;
Bhattacharya, Keshab ;
Zhang, Yanhua ;
Swaney, Stephen ;
Van Becelaere, Keri ;
Stevens, Raymond C. ;
Cravatt, Benjamin F. .
CHEMISTRY & BIOLOGY, 2009, 16 (04) :411-420
[6]   Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity [J].
Ahn, Kyunghye ;
Johnson, Douglas S. ;
Fitzgerald, Laura R. ;
Liimatta, Marya ;
Arendse, Andrea ;
Stevenson, Tracy ;
Lund, Eric. T. ;
Nugent, Richard A. ;
Nomanbhoy, Tyzoon K. ;
Alexander, Jessica P. ;
Cravatt, Benjamin F. .
BIOCHEMISTRY, 2007, 46 (45) :13019-13030
[7]   Mechanism of carbamate inactivation of FAAH: Implications for the design of covalent inhibitors and in vivo functional probes for enzymes [J].
Alexander, JP ;
Cravatt, BF .
CHEMISTRY & BIOLOGY, 2005, 12 (11) :1179-1187
[8]   Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum [J].
Arastu-Kapur, Shirin ;
Ponder, Elizabeth L. ;
Fonovic, Ursa Pecar ;
Yeoh, Sharon ;
Yuan, Fang ;
Fonovic, Marko ;
Grainger, Munira ;
Phillips, Carolyn I. ;
Powers, James C. ;
Bogyo, Matthew .
NATURE CHEMICAL BIOLOGY, 2008, 4 (03) :203-213
[9]   Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine [J].
Bar-On, P ;
Millard, CB ;
Harel, M ;
Dvir, H ;
Enz, A ;
Sussman, JL ;
Silman, I .
BIOCHEMISTRY, 2002, 41 (11) :3555-3564
[10]   Activity-based protein profiling for the functional annotation of enzymes [J].
Barglow, Katherine T. ;
Cravatt, Benjamin F. .
NATURE METHODS, 2007, 4 (10) :822-827