Hollow Nanostructured Anode Materials for Li-Ion Batteries

被引:226
作者
Liu, Jun [1 ]
Xue, Dongfeng [1 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, Dept Mat Sci & Chem Engn, State Key Lab Fine Chem, Dalian 116012, Peoples R China
来源
NANOSCALE RESEARCH LETTERS | 2010年 / 5卷 / 10期
基金
中国国家自然科学基金;
关键词
Li-ion batteries; Anode; Hollow nanomaterials; Nanotubes; Nanocomposites; HIGH-PERFORMANCE ANODE; LITHIUM STORAGE; CARBON SPHERES; ENERGY-CONVERSION; CO3O4; NANOTUBES; SNO2; NANOPARTICLES; NANOSPHERES; ROUTE; ARCHITECTURES;
D O I
10.1007/s11671-010-9728-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability.
引用
收藏
页码:1525 / 1534
页数:10
相关论文
共 62 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries [J].
Cao, AM ;
Hu, JS ;
Liang, HP ;
Wan, LJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (28) :4391-4395
[4]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[5]   A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries [J].
Cui, Guanglei ;
Hu, Yong-Sheng ;
Zhi, Linjie ;
Wu, Dongqing ;
Lieberwirth, Ingo ;
Maier, Joachim ;
Muellen, Klaus .
SMALL, 2007, 3 (12) :2066-2069
[6]   Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage [J].
Deng, Da ;
Lee, Jim Yang .
CHEMISTRY OF MATERIALS, 2008, 20 (05) :1841-1846
[7]   Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:: A highly efficient material for Li-battery applications [J].
Du, Ning ;
Zhang, Hui ;
Chen, Bindi ;
Wu, Jianbo ;
Ma, Xiangyang ;
Liu, Zhihong ;
Zhang, Yiqiang ;
Yang, Deren ;
Huang, Xiaohua ;
Tu, Jiangping .
ADVANCED MATERIALS, 2007, 19 (24) :4505-+
[8]   Hollow graphene oxide spheres self-assembled by W/O emulsion [J].
Guo, Peng ;
Song, Huaihe ;
Chen, Xiaohong .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (23) :4867-4874
[9]   Nanostructured materials for electrochemical energy conversion and storage devices [J].
Guo, Yu-Guo ;
Hu, Jin-Song ;
Wan, Li-Jun .
ADVANCED MATERIALS, 2008, 20 (15) :2878-2887
[10]   The synthesis of hollow spherical Li4Ti5O12 by macroemulsion method and its application in Li-ion batteries [J].
Huang, Junjie ;
Jiang, Zhiyu .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (07) :A16-A18