Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation

被引:157
作者
Thomas, MJ
Watabe, AM
Moody, TD
Makhinson, M
O'Dell, TJ
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Physiol, Ctr Hlth Sci 53 231, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Sch Med, Interdept PhD Program Neurosci, Los Angeles, CA 90095 USA
关键词
long-term potentiation; complex spike burst; hippocampus; pyramidal cells; synaptic transmission; learning and memory;
D O I
10.1523/jneurosci.18-18-07118.1998
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Long-term potentiation (LTP), a persistent enhancement of synaptic transmission that may be involved in some forms of learning and memory, is induced at excitatory synapses in the CA1 region of the hippocampus by coincident presynaptic and postsynaptic activity. Although action potentials back-propagating into dendrites of hippocampal pyramidal cells provide sufficient postsynaptic activity to induce LTP under some in vitro conditions, it is not known whether LTP can be induced by patterns of postsynaptic action potential firing that occur in these cells in vivo. Here we report that a characteristic in vivo pattern of action potential generation in CA1 pyramidal cells known as the complex spike burst enables the induction of LTP during theta frequency synaptic stimulation in the CA1 region of hippocampal slices maintained in vitro. Our results suggest that complex spike bursting may have an important role in synaptic processes involved in learning and memory formation, perhaps by producing a highly sensitive postsynaptic state during which even low frequencies of presynaptic activity can induce LTP.
引用
收藏
页码:7118 / 7126
页数:9
相关论文
共 57 条
[1]   EFFECTS OF THE NMDA ANTAGONIST 2AP5 ON COMPLEX SPIKE DISCHARGE BY HIPPOCAMPAL PYRAMIDAL CELLS [J].
ABRAHAM, WC ;
KAIRISS, EW .
NEUROSCIENCE LETTERS, 1988, 89 (01) :36-42
[2]   Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells [J].
Azouz, R ;
Jensen, MS ;
Yaari, Y .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 492 (01) :211-223
[3]   A PHYSIOLOGICAL-BASIS FOR A THEORY OF SYNAPSE MODIFICATION [J].
BEAR, MF ;
COOPER, LN ;
EBNER, FF .
SCIENCE, 1987, 237 (4810) :42-48
[4]   THE PHYSIOLOGY AND PHARMACOLOGY OF HIPPOCAMPAL-FORMATION THETA RHYTHMS [J].
BLAND, BH .
PROGRESS IN NEUROBIOLOGY, 1986, 26 (01) :1-54
[5]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[6]   Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region [J].
Blitzer, RD ;
Wong, T ;
Nouranifar, R ;
Iyengar, R ;
Landau, EM .
NEURON, 1995, 15 (06) :1403-1414
[7]   POSTSYNAPTIC INDUCTION AND PRESYNAPTIC EXPRESSION OF HIPPOCAMPAL LONG-TERM DEPRESSION [J].
BOLSHAKOV, VY ;
SIEGELBAUM, SA .
SCIENCE, 1994, 264 (5162) :1148-1152
[8]   Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo [J].
Buzsaki, G ;
Penttonen, M ;
Nadasdy, Z ;
Bragin, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (18) :9921-9925
[9]   Ca2+ signaling requirements for long-term depression in the hippocampus [J].
Cummings, JA ;
Mulkey, RM ;
Nicoll, RA ;
Malenka, RC .
NEURON, 1996, 16 (04) :825-833
[10]   PAIRED-PULSE DEPRESSION OF MONOSYNAPTIC GABA-MEDIATED INHIBITORY POSTSYNAPTIC RESPONSES IN RAT HIPPOCAMPUS [J].
DAVIES, CH ;
DAVIES, SN ;
COLLINGRIDGE, GL .
JOURNAL OF PHYSIOLOGY-LONDON, 1990, 424 :513-531