Combining syntax and semantics through prime form representation

被引:10
作者
Bittencourt, Guilherme [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Automacao & Sistemas, BR-88040900 Florianopolis, SC, Brazil
关键词
knowledge representation; model counting; prime implicants; knowledge compilation; belief revision;
D O I
10.1093/logcom/exm051
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article presents an algorithm that, besides calculating the number of models of a propositional logic theory, also determines the distribution of these models among the terms of a disjunctive normal form representation of the theory. Using prime implicants to represent the target theory, in a knowledge compilation context, we discuss how this distribution can be used to define belief change operators that respect the theory structure. Some experimental results are also presented.
引用
收藏
页码:13 / 33
页数:21
相关论文
共 41 条
[1]   ON THE LOGIC OF THEORY CHANGE - PARTIAL MEET CONTRACTION AND REVISION FUNCTIONS [J].
ALCHOURRON, CE ;
GARDENFORS, P ;
MAKINSON, D .
JOURNAL OF SYMBOLIC LOGIC, 1985, 50 (02) :510-530
[2]  
Bayardo RJ, 2000, SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), P157
[3]   The good old Davis-Putnam procedure helps counting models [J].
Birnbaum, E ;
Lozinskii, EL .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1999, 10 :457-477
[4]   An algorithm for dual transformation in first-order logic [J].
Bittencourt, G ;
Tonin, I .
JOURNAL OF AUTOMATED REASONING, 2001, 27 (04) :353-389
[5]  
BITTENCOURT G, 2004, P 16 EUR C ART INT E, P22
[6]  
Bittencourt G., 2003, P 4 INT WORKSH IMPL, P18
[7]  
Cadoli M, 1997, AI COMMUN, V10, P137
[8]  
DAHLLOF V, 2002, COCOON 02
[9]  
Dalal M., 1988, AAAI 88. Seventh National Conference on Artificial Intelligence, P475
[10]   A knowledge compilation map [J].
Darwiche, A ;
Marquis, P .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2002, 17 :229-264