Enhancers and core promoter elements are essential for the activity of a cryptic gene activation sequence from tobacco, tCUP

被引:39
作者
Wu, K
Malik, K
Tian, L
Hu, M
Martin, T
Foster, E
Brown, D
Miki, B [1 ]
机构
[1] Agr & Agri Food Canada, Eastern Cereal & Oilseed Res Ctr, Ottawa, ON K1A 0C6, Canada
[2] Agr & Agri Food Canada, So Crop Protect & Food Res Ctr, Ottawa, ON N5V 4T3, Canada
关键词
cryptic promoter; tCUP; enhancers; core promoter; transgenic plant;
D O I
10.1007/s004380100478
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cryptic gene regulatory elements are, sequences that are inactive at their native locations in the genome but have the ability to become functional when positioned adjacent to genes. We have recently isolated such a cryptic sequence from tobacco, tCUP, that can act as a promoter. A 135-bp fragment spanning extending from position -197 to -62, relative to the transcription start site, was found to promote GUS expression in all of the major organs of transgenic Arabidopsis plants. Furthermore, this 135-bp fragment complemented the -46 minimal promoter of CaMV 35S and conferred constitutive expression on transgenic Arabidopsis plants. An electrophoretic mobility-shift assay showed that nuclear proteins prepared from tobacco leaves interact with the 135-bp fragment. tCUP has a core promoter that lacks the TATA consensus sequence but addition of a TATA-box sequence increased the core promoter activity by three-fold. The sequence surrounding the transcription start site of tCUP has sequence similarity with the initiator element (Inr), and deletion of this sequence significantly reduced promoter activity, suggesting that an essential Inr element may exist in the tCUP core promoter. Fusion of the GCC-box enhancer element from pathogenesis-related genes to the core promoter elevated tCUP core promoter activity. Our study indicates that cryptic promoters are similar in composition and organization to promoters associated with expressed genes and that their promoter elements can be combined to create composite promoters that are fully functional. This data provides direct evidence that the expression pattern of plant genes can be influenced by cryptic gene regulatory elements when they are brought into juxtaposition with genes through DNA rearrangements.
引用
收藏
页码:763 / 770
页数:8
相关论文
共 38 条
[1]   THE HERPES-SIMPLEX VIRUS TYPE-1 THYMIDINE KINASE IS EXPRESSED IN THE TESTES OF TRANSGENIC MICE UNDER THE CONTROL OF A CRYPTIC PROMOTER [J].
ALSHAWI, R ;
BURKE, J ;
WALLACE, H ;
JONES, C ;
HARRISON, S ;
BUXTON, D ;
MALEY, S ;
CHANDLEY, A ;
BISHOP, JO .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (08) :4207-4216
[2]  
Baszczynski CL, 1997, MAYDICA, V42, P189
[3]   A gene fusion at a homeobox locus: Alterations in leaf shape and implications for morphological evolution [J].
Chen, JJ ;
Janssen, BJ ;
Williams, A ;
Sinha, N .
PLANT CELL, 1997, 9 (08) :1289-1304
[4]   A promoter identified in the 3' end of the Ac transposon can be activated by cis-acting elements in transgenic Arabidopsis lines [J].
Cocherel, S ;
Perez, P ;
Degroote, F ;
Genestier, S ;
Picard, G .
PLANT MOLECULAR BIOLOGY, 1996, 30 (03) :539-551
[5]   NOVEL AND USEFUL PROPERTIES OF A CHIMERIC PLANT PROMOTER COMBINING CAMV-35S AND MAS ELEMENTS [J].
COMAI, L ;
MORAN, P ;
MASLYAR, D .
PLANT MOLECULAR BIOLOGY, 1990, 15 (03) :373-381
[6]   Transcriptional regulators and the evolution of plant form [J].
Doebley, J ;
Lukens, L .
PLANT CELL, 1998, 10 (07) :1075-1082
[7]  
FANG RX, 1989, PLANT CELL, V1, P141, DOI 10.1105/tpc.1.1.141
[8]   DETECTION OF GENE REGULATORY SIGNALS IN PLANTS REVEALED BY T-DNA-MEDIATED FUSIONS [J].
FOBERT, PR ;
MIKI, BL ;
IYER, VN .
PLANT MOLECULAR BIOLOGY, 1991, 17 (04) :837-851
[9]   T-DNA TAGGING OF A SEED COAT-SPECIFIC CRYPTIC PROMOTER IN TOBACCO [J].
FOBERT, PR ;
LABBE, H ;
COSMOPOULOS, J ;
GOTTLOBMCHUGH, S ;
OUELLET, T ;
HATTORI, J ;
SUNOHARA, G ;
IYER, VN ;
MIKI, BL .
PLANT JOURNAL, 1994, 6 (04) :567-577
[10]   A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging [J].
Foster, E ;
Hattori, J ;
Labbé, H ;
Ouellet, T ;
Fobert, PR ;
James, LE ;
Iyer, VN ;
Miki, BL .
PLANT MOLECULAR BIOLOGY, 1999, 41 (01) :45-55