Data-Intensive Science in the US DOE: Case Studies and Future Challenges

被引:22
作者
Ahrens, James P. [1 ]
Hendrickson, Bruce [2 ]
Long, Gabrielle [3 ]
Miller, Steve [4 ]
Ross, Robert
Williams, Dean [5 ]
机构
[1] Los Alamos Natl Lab, Appl Comp Sci Grp, Data Sci Scale Team, Los Alamos, NM 87545 USA
[2] Sandia Natl Labs, Livermore, CA 94550 USA
[3] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
[4] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Data Syst Sect, Oak Ridge, TN USA
[5] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA
关键词
Data management; Data-intensive science; High-performance computing; Scientific computing;
D O I
10.1109/MCSE.2011.77
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given its leading role in high-performance computing for modeling and simulation and its many experimental facilities, the US Department of Energy has a tremendous need for data-intensive science. Locating the challenges and commonalities among three case studies illuminates, in detail, the technical challenges involved in realizing data-intensive science.
引用
收藏
页码:14 / 23
页数:10
相关论文
共 4 条
  • [1] ALLCOCK B, 2009, US OFF ADV SCI COMP
  • [2] FULTZ B, 2010, COMPUTATIONAL SCATTE
  • [3] Solomon S, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P1
  • [4] Washington W., 2008, Scientific Grand Challenges: Challenges in Climate Change Science and the Role of Computing at the Extreme Scale