Guidelines for improving resistance to CO2 of materials for solid state electrochemical systems

被引:19
作者
Brandao, A. [1 ]
Monteiro, J. F. [1 ]
Kovalevsky, A. V. [1 ,2 ]
Fagg, D. P. [1 ,3 ]
Kharton, V. V. [1 ]
Frade, J. R. [1 ]
机构
[1] Univ Aveiro, Dept Ceram & Glass Engn, CICECO, P-3810193 Aveiro, Portugal
[2] Flemish Inst Technol Res VITO, B-2400 Mol, Belgium
[3] Univ Aveiro, Nanotechnol Res Div, Ctr Mech Technol & Automat, P-3810193 Aveiro, Portugal
关键词
Carbonation; Tolerance limits; Stability diagrams; Proton conductors; Perovskites; CARBON-DIOXIDE; STABILITY; DECOMPOSITION; CONDUCTIVITY; PEROVSKITE;
D O I
10.1016/j.ssi.2010.02.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alkali earth oxides are present in many ionic and mixed conductors with a potential application in solid state electrochemical or electroceramic devices. Hence, study has been made of the relative risks of carbonation of selective materials based on thermodynamic predictions, with emphasis on ATiO(3) electroceramics, with A = Ca, Sr, Ba, and proton conductors based on AMO(3) perovskites with A=Sr or Ba and M=Ce or Zr. Predictions show that slight A-site deficiency lowers the activity of alkali earth oxide and enhances resistance to CO2; this is confirmed by experimental findings. Thermodynamic predictions also indicate that the high stability of (Ba,Sr)TiO3 and (Ba,Sr)ZrO3 perovskites contributes to attain reasonable resistance to CO2, in spite of the ready carbonation of BaO and SrO. However, these materials show wide gap between the upper and lower limits of resistance to CO2. This gap provides interpretation for the effects of powder preparation and/or ceramic processing on resistance to CO2. It is also shown that the lower and upper limits of resistance to CO2 correlate with the structural tolerance factor of these perovskites. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 20
页数:5
相关论文
共 18 条
[1]   Mechanosynthesis of nanopowders of the proton-conducting electrolyte material Ba(Zr, Y)O3-δ [J].
Antunes, I. ;
Brandao, A. ;
Figueiredo, F. M. ;
Frade, J. R. ;
Gracio, J. ;
Fagg, D. P. .
JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (08) :2149-2156
[2]   Photoemission and quantum chemical study of SrTiO3(001) surfaces and their interaction with CO2 [J].
Baniecki, J. D. ;
Ishii, M. ;
Kurihara, K. ;
Yamanaka, K. ;
Yano, T. ;
Shinozaki, K. ;
Imada, T. ;
Nozaki, K. ;
Kin, N. .
PHYSICAL REVIEW B, 2008, 78 (19)
[3]   ADSORPTION OF CARBON-DIOXIDE BY BARIUM-TITANATE - EVIDENCE OF ADSORPTION PROCESS MEDIATED BY A DIPOLE-DIPOLE INTERACTION [J].
CABRERA, AL ;
VARGAS, F ;
ZARATE, RA .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1994, 55 (11) :1303-1307
[4]  
Dean J.A., 1979, Lange's Handbook of Chemistry, V12th
[5]   Sintering behaviour and microstructural evolution of agglomerated spherical particles of high-purity barium titanate [J].
Duran, P ;
Tartaj, J ;
Moure, C .
CERAMICS INTERNATIONAL, 2003, 29 (04) :419-425
[6]   Stability of SrFeO3-based materials in H2O/CO2-containing atmospheres at high temperatures and pressures [J].
Kaus, Ingeborg ;
Wiik, Kjell ;
Krogh, Bente ;
Dahle, Marit ;
Hofstad, Karina H. ;
Aasland, Siv .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (07) :2226-2230
[7]   Mixed conductivity and stability of A-site-deficient Sr(Fe,Ti)O3-δ perovskites [J].
Kharton, VV ;
Kovalevsky, AV ;
Tsipis, EV ;
Viskup, AP ;
Naumovich, EN ;
Jurado, JR ;
Frade, JR .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2002, 7 (01) :30-36
[8]   Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres [J].
Lue Jingde ;
Wang Ling ;
Fan Lihua ;
Li Yuehua ;
Dai Lei ;
Guo Hongxia .
JOURNAL OF RARE EARTHS, 2008, 26 (04) :505-510
[9]   Protonic conductivity nanostructured ceramic film with improved resistance to carbon dioxide at elevated temperatures [J].
Ma, XQ ;
Dai, JX ;
Zhang, H ;
Reisner, DE .
SURFACE & COATINGS TECHNOLOGY, 2005, 200 (5-6) :1252-1258
[10]  
Nyquist R A, 1997, HDB INFRARED RAMAN S, V4