Rotational motion of pentane in the flat γ cages of zeolite KFI

被引:11
作者
Saengsawang, Oraphan [1 ]
Schuering, Andreas [1 ,2 ]
Remsungnen, Tawun [5 ]
Loisruangsin, Arthorn [3 ]
Hannongbua, Supot [4 ]
Magusin, Pieter C. M. M. [6 ]
Fritzsche, Siegfried [1 ]
机构
[1] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
[2] Univ Leipzig, Inst Expt Phys 1, D-04103 Leipzig, Germany
[3] Kasetsart Univ, Dept Sci, Kamphaeng Saen, Nakorn Pathom, Thailand
[4] Chulalongkorn Univ, Dept Chem, Bangkok, Thailand
[5] Khon Khaen Univ, Dept Math, Khon khaen, Thailand
[6] Eindhoven Univ Technol, Dept Chem Engn & Chem, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1021/jp075899m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The orientation distribution and confined rotational motion of n-pentane in the oblate gamma cages of zeolite KFI is computed by use of MD simulation. Pentane is preferably oriented with its end-to-end vector in the x and y direction perpendicular to the C-4 symmetry axis of the cage. For comparison with a previous NMR study (Zorine et al.; J. Phys. Chem. B 2004, 108, 5600), the orientational autocorrelation function (OACF) of the C1C2C3 bi-sector is obtained from the simulations between 125 and 450 K, and decomposed into three exponential components. The slowest component follows the Arrhenius law with an activation energy of 13 kJ mol(-1) and corresponds well to the effective rotation correlation times obtained from NMR relaxation above 200 K. MD trajectory analysis suggests that this component reflects gauche-trans conformation changes within the cage. According to our present findings, rotation of trans-trans pentane about the cage symmetry axis, which was previously proposed as the source for NMR relaxation, is actually too fast. Based on the OACF analysis, the non-Arrhenius behavior observed in the mentioned NMR study is now explained by a simultaneous increase of the correlation time and relative amplitude of the slowest OACF component versus inverse temperature.
引用
收藏
页码:5922 / 5929
页数:8
相关论文
共 34 条
[1]   Diffusion in zeolites via cage-to-cage kinetics: Modeling benzene diffusion in Na-Y [J].
Auerbach, SM ;
Metiu, HI .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (09) :3753-3760
[2]   Loading dependence of the diffusion coefficient of methane in nanoporous materials [J].
Beerdsen, E. ;
Dubbeldam, D. ;
Smit, B. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45) :22754-22772
[3]  
Böhlmann W, 1999, MAGN RESON CHEM, V37, pS126
[4]   Diffusion and vibrational relaxation of a diatomic molecule in the pore network of a pure silica zeolite: A molecular dynamics study [J].
Demontis, P ;
Suffritti, GB ;
Tilocca, A .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (13) :5586-5594
[5]   MOLECULAR-DYNAMICS STUDIES ON ZEOLITES .3. DEHYDRATED ZEOLITE-A [J].
DEMONTIS, P ;
SUFFRITTI, GB ;
QUARTIERI, S ;
FOIS, ES ;
GAMBA, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (04) :867-871
[6]   An effective harmonic potential for aluminophosphate molecular sieves:: application to AlPO4-5 [J].
Demontis, P ;
González, JG ;
Suffritti, GB ;
Tilocca, A ;
de las Pozas, C .
MICROPOROUS AND MESOPOROUS MATERIALS, 2001, 42 (01) :103-111
[7]   MOLECULAR-DYNAMICS STUDIES ON ZEOLITES .5. DISCUSSION OF THE STRUCTURAL-CHANGES OF SILICALITE [J].
DEMONTIS, P ;
SUFFRITTI, GB ;
QUARTIERI, S ;
GAMBA, A ;
FOIS, ES .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1991, 87 (10) :1657-1663
[8]   Is there a coupling between rotational and translational motion of methane in silicalite-1 and AlPO4-5? [J].
Fritzsche, S ;
Osotchan, T ;
Schüring, A ;
Hannongbua, S ;
Kärger, J .
CHEMICAL PHYSICS LETTERS, 2005, 411 (4-6) :423-428
[9]   ON THE DIFFUSION MECHANISM OF METHANE IN A CATION-FREE ZEOLITE OF TYPE ZK4 [J].
FRITZSCHE, S ;
HABERLANDT, R ;
KARGER, J ;
PFEIFER, H ;
HEINZINGER, K .
CHEMICAL PHYSICS, 1993, 174 (02) :229-236
[10]   Reorientational and translational dynamics of benzene in zeolite NaY as studied by one- and two-dimensional exchange spectroscopy and static-field-gradient nuclear magnetic resonance [J].
Geil, B ;
Isfort, O ;
Boddenberg, B ;
Favre, DE ;
Chmelka, BF ;
Fujara, F .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (05) :2184-2193