Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment

被引:156
作者
Son, S. -W. [1 ]
Gerber, E. P. [12 ]
Perlwitz, J. [16 ,25 ]
Polvani, L. M. [18 ,26 ]
Gillett, N. P. [13 ]
Seo, K. -H. [20 ]
Eyring, V. [9 ]
Shepherd, T. G. [21 ]
Waugh, D. [24 ]
Akiyoshi, H. [2 ]
Austin, J. [3 ]
Baumgaertner, A. [4 ]
Bekki, S. [5 ]
Braesicke, P. [6 ]
Bruehl, C. [4 ]
Butchart, N. [7 ]
Chipperfield, M. P. [8 ]
Cugnet, D. [5 ]
Dameris, M. [9 ]
Dhomse, S. [8 ]
Frith, S. [10 ]
Garny, H. [9 ]
Garcia, R. [11 ]
Hardiman, S. C. [7 ]
Joeckel, P. [9 ]
Lamarque, J. F. [11 ]
Mancini, E. [14 ]
Marchand, M. [5 ]
Michou, M. [15 ]
Nakamura, T. [2 ]
Morgenstern, O. [6 ]
Pitari, G. [14 ]
Plummer, D. A. [17 ]
Pyle, J. [6 ]
Rozanov, E. [19 ,27 ]
Scinocca, J. F. [13 ]
Shibata, K. [22 ]
Smale, D. [23 ]
Teyssedre, H. [15 ]
Tian, W. [8 ]
Yamashita, Y. [2 ]
机构
[1] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 2K6, Canada
[2] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan
[3] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA
[4] Max Planck Inst Chem, D-55020 Mainz, Germany
[5] CNRS INSU, UPMC, UVSQ, Inst Pierre Simone Laplace,LATMOS, F-75252 Paris, France
[6] Univ Cambridge, Dept Chem, NCAS Climate Chem, Cambridge CB2 1EW, England
[7] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England
[8] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[9] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfahrt, D-82234 Oberpfaffenhofen, Germany
[10] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[11] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA
[12] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USA
[13] Univ Victoria, Canadian Ctr Climate Modelling & Anal, Environm Canada, Victoria, BC V8W 2Y2, Canada
[14] Univ Aquila, Dipartimento Fis, I-67010 Coppito, Laquila, Italy
[15] Ctr Natl Rech Meteorol, GAME, CNRM, Meteo France, F-31057 Toulouse, France
[16] NOAA, Earth Syst Res Lab, Div Phys Sci, Boulder, CO 80305 USA
[17] Environm Canada, Canadian Ctr Climate Modelling & Anal, Toronto, ON V8W 3V6, Canada
[18] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[19] Phys Meteorol Observatorium Davos World Radiat Ct, CH-7260 Davos, Switzerland
[20] Pusan Natl Univ, Dept Atmospher Sci, Pusan 609735, South Korea
[21] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[22] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan
[23] Natl Inst Water & Atmospher Res, Lauder 9320, Central Otago, New Zealand
[24] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA
[25] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA
[26] Columbia Univ, Dept Earth & Environm Sci, New York, NY USA
[27] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
CHEMISTRY-CLIMATE MODEL; RELATIVELY SIMPLE AGCM; ANNULAR MODE; PART II; TROPOSPHERIC RESPONSE; TECHNICAL NOTE; HADLEY-CELL; TRENDS; VARIABILITY; SIMULATION;
D O I
10.1029/2010JD014271
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The impact of stratospheric ozone on the tropospheric general circulation of the Southern Hemisphere (SH) is examined with a set of chemistry-climate models participating in the Stratospheric Processes and their Role in Climate (SPARC)/Chemistry-Climate Model Validation project phase 2 (CCMVal-2). Model integrations of both the past and future climates reveal the crucial role of stratospheric ozone in driving SH circulation change: stronger ozone depletion in late spring generally leads to greater poleward displacement and intensification of the tropospheric midlatitude jet, and greater expansion of the SH Hadley cell in the summer. These circulation changes are systematic as poleward displacement of the jet is typically accompanied by intensification of the jet and expansion of the Hadley cell. Overall results are compared with coupled models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), and possible mechanisms are discussed. While the tropospheric circulation response appears quasi-linearly related to stratospheric ozone changes, the quantitative response to a given forcing varies considerably from one model to another. This scatter partly results from differences in model climatology. It is shown that poleward intensification of the westerly jet is generally stronger in models whose climatological jet is biased toward lower latitudes. This result is discussed in the context of quasi-geostrophic zonal mean dynamics.
引用
收藏
页数:18
相关论文
共 108 条
[1]   A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980-2004 under the CCMVal scenarios [J].
Akiyoshi, H. ;
Zhou, L. B. ;
Yamashita, Y. ;
Sakamoto, K. ;
Yoshiki, M. ;
Nagashima, T. ;
Takahashi, M. ;
Kurokawa, J. ;
Takigawa, M. ;
Imamura, T. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[2]  
Andrews D., 1987, INT GEOPHYS
[3]  
[Anonymous], J CLIM IN PRESS
[4]  
[Anonymous], GEOPHYS RES LETT
[5]  
[Anonymous], J CLIM IN PRESS
[6]  
[Anonymous], CGER SUPERCOMPUTER M
[7]  
[Anonymous], 2010, SPARC CCMVal report on the evaluation of chemistry-climate models (Tech. Rep. Nos. 5, WCRP-30/2010, WMO/TD No. 40,
[8]  
[Anonymous], 1957, WMO Bull, V6, P136
[9]   Contributions of external forcings to southern annular mode trends [J].
Arblaster, Julie M. ;
Meehl, Gerald A. .
JOURNAL OF CLIMATE, 2006, 19 (12) :2896-2905
[10]   Coupled chemistry-climate model simulations for the period 1980 to 2020: Ozone depletion and the start of ozone recovery [J].
Austin, J ;
Butchart, N .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2003, 129 (595) :3225-3249