Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities

被引:203
作者
Bollerslev, Tim [1 ,2 ]
Gibson, Michael [3 ]
Zhou, Hao [3 ]
机构
[1] Duke Univ, Dept Econ, Durham, NC 27708 USA
[2] NBER, Cambridge, MA 02138 USA
[3] Fed Reserve Board, Risk Anal Sect, Washington, DC 20551 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Stochastic volatility risk premium; Model-free implied volatility; Model-free realized volatility; Black-Scholes; GMM estimation; Return predictability; STOCHASTIC VOLATILITY; STOCK RETURNS; PRICES; VARIANCE; CONSUMPTION; COVARIANCE; MOMENTS; SAMPLE; NOISE; JUMPS;
D O I
10.1016/j.jeconom.2010.03.033
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a method for constructing a volatility risk premium, or investor risk aversion, index. The method is intuitive and simple to implement, relying on the sample moments of the recently popularized model-free realized and option-implied volatility measures. A small-scale Monte Carlo experiment confirms that the procedure works well in practice. Implementing the procedure with actual S&P500 option-implied volatilities and high-frequency five-minute-based realized volatilities indicates significant temporal dependencies in the estimated stochastic volatility risk premium, which we in turn relate to a set of macro-finance state variables. We also find that the extracted volatility risk premium helps predict future stock market returns. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 64 条
[1]   Stock Returns and Volatility: Pricing the Short-Run and Long-Run Components of Market Risk [J].
Adrian, Tobias ;
Rosenberg, Joshua .
JOURNAL OF FINANCE, 2008, 63 (06) :2997-3030
[2]   Nonparametric risk management and implied risk aversion [J].
Aït-Sahalia, Y ;
Lo, AW .
JOURNAL OF ECONOMETRICS, 2000, 94 (1-2) :9-51
[3]   How often to sample a continuous-time process in the presence of market microstructure noise [J].
Aït-Sahalia, Y ;
Mykland, PA ;
Zhang, L .
REVIEW OF FINANCIAL STUDIES, 2005, 18 (02) :351-416
[4]   Maximum likelihood estimation of stochastic volatility models [J].
Ait-Sahalia, Yacine ;
Kimmel, Robert .
JOURNAL OF FINANCIAL ECONOMICS, 2007, 83 (02) :413-452
[5]   Predictive regressions: A reduced-bias estimation method [J].
Amihud, Y ;
Hurvich, CM .
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 2004, 39 (04) :813-841
[6]   The distribution of realized stock return volatility [J].
Andersen, TG ;
Bollerslev, T ;
Diebold, FX ;
Ebens, H .
JOURNAL OF FINANCIAL ECONOMICS, 2001, 61 (01) :43-76
[7]   Analytical evaluation of volatility forecasts [J].
Andersen, TG ;
Bollerslev, T ;
Meddahi, N .
INTERNATIONAL ECONOMIC REVIEW, 2004, 45 (04) :1079-1110
[8]   Modeling and forecasting realized volatility [J].
Andersen, TG ;
Bollerslev, T ;
Diebold, FX ;
Labys, P .
ECONOMETRICA, 2003, 71 (02) :579-625
[9]  
ANDERSEN TG, 2007, STATISTICS, V89, P701
[10]  
ANDERSEN TG, 2009, HDB FINANCI IN PRESS, pCH2