Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries

被引:53
作者
Matsumura, Tadaaki [1 ]
Nakano, Kazuki [1 ]
Kanno, Ryoji [2 ]
Hirano, Atsushi [1 ]
Imanishi, Nobuyuki [1 ]
Takeda, Yasuo [1 ]
机构
[1] Mie Univ, Fac Engn, Dept Chem Mat, Tsu, Mie 5148507, Japan
[2] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Dept Elect Chem, Yokohama, Kanagawa 2268502, Japan
关键词
thio-LISICON; nickel sulfide; all-solid-state-battery;
D O I
10.1016/j.jpowsour.2007.06.168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The nickel sulfide, Ni3S2, was examined as a potential cathode material of the all-solid-state-lithium-batteries using thio-LISICON, Li2S-GeS2-P2S5, as the solid-electrolyte. Ni3S2 and Li2S-GeS2-P2S5 system, was synthesized with a new sintering system, which proceed under a flowing argon in the reusable quartz tube. The highest ionic conductivity 2.39 x 10(-3) S cm(-1) was observed for a sample prepared at 700 degrees C with 10% of excess P2S5, and bear comparison with the maximum conductivity reported for the thio-LISICON, Li3.35Ge0.35P0.65S4. An all-solid-state-lithium-battery based on, Ni3S2/Li3.35Ge0.35P0.65S4/Li-Al alloy, showed electrochemical capacities of greater than similar to 300 mAh g(-1) after 30 cycles. The cycling performances of the cells were found to be dependent on the Ni3S2/thio-LISICON compositions in the cathode mixture, with a cell containing 60 wt.% of Ni3S2 exhibiting the most stable reversible capacities. As the depth of the first discharge capacity also influences the cycling properties, Ni3S2 consumed during the discharge reaction may play an important role in the nickel reduction mechanism. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:632 / 636
页数:5
相关论文
共 10 条
[1]   High lithium ion conductivity of glass-ceramics derived from mechanically milled glassy powders [J].
Hayashi, A ;
Hama, S ;
Morimoto, H ;
Tatsumisago, M ;
Minami, T .
CHEMISTRY LETTERS, 2001, (09) :872-873
[2]   A self-assembled breathing interface for all-solid-state ceramic lithium batteries [J].
Kanno, R ;
Murayama, M ;
Inada, T ;
Kobayashi, T ;
Sakamoto, K ;
Sonoyama, N ;
Yamada, A ;
Kondo, S .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (12) :A455-A458
[3]   Lithium ionic conductor thio-LISICON -: The Li2S-GeS2-P2S5 system [J].
Kanno, R ;
Maruyama, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :A742-A746
[4]   Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system [J].
Kanno, R ;
Hata, T ;
Kawamoto, Y ;
Irie, M .
SOLID STATE IONICS, 2000, 130 (1-2) :97-104
[5]  
Kobayashi T, 2005, MATER RES SOC SYMP P, V835, P333
[6]   Synthesis of new lithium ionic conductor thio-LISICON - Lithium silicon sulfides system [J].
Murayama, M ;
Kanno, R ;
Irie, M ;
Ito, S ;
Hata, T ;
Sonoyama, N ;
Kawamoto, Y .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 168 (01) :140-148
[7]   Synthesis of phosphorous sulfide solid electrolyte and all-solid-state lithium batteries with graphite electrode [J].
Seino, Y ;
Takada, K ;
Kim, BC ;
Zhang, LQ ;
Ohta, N ;
Wada, H ;
Osada, M ;
Sasaki, T .
SOLID STATE IONICS, 2005, 176 (31-34) :2389-2393
[8]   Solid-state lithium battery with graphite anode [J].
Takada, K ;
Inada, T ;
Kajiyama, A ;
Sasaki, H ;
Kondo, S ;
Watanabe, M ;
Murayama, M ;
Kanno, R .
SOLID STATE IONICS, 2003, 158 (3-4) :269-274
[9]   LITHIUM ORGANIC ELECTROLYTE CELLS USING THE COPPER CHEVREL PHASE AS CATHODE [J].
TAKEDA, Y ;
KANNO, R ;
NODA, M ;
YAMAMOTO, O .
MATERIALS RESEARCH BULLETIN, 1985, 20 (01) :71-77
[10]   Room-temperature mechanosynthesis of Ni3S2 as cathode material for rechargeable lithium polymer batteries [J].
Zhu, XJ ;
Wen, ZY ;
Gu, ZH ;
Huang, SH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (03) :A504-A507