Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides

被引:210
作者
Sum, AK
Faller, R
de Pablo, JJ
机构
[1] Univ Wisconsin, Dept Chem Engn, Madison, WI 53706 USA
[2] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0006-3495(03)74706-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Molecular simulations of hydrated dipalmitoylphosphatidylcholine lipid bilayers have been performed for temperatures in the range of 250 - 450 K. The area per headgroup increases with temperature from 58 to 77 Angstrom(2). Other properties such as hydration number, alkyl tail order parameter, diffusion coefficients, and radial distribution functions exhibit a clear dependence on temperature. Simulations of bilayers have also been performed in the presence of two disaccharides, namely trehalose and sucrose, at concentrations of up to 18 wt% (lipid-free basis). The simulated area per headgroup of the bilayer is not affected by the presence of the disaccharides, suggesting that the overall structure of the bilayer remains undisturbed. The results of simulations reveal that the interaction of disaccharide molecules with the bilayer occurs at the surface of the bilayer, and it is governed by the formation of multiple hydrogen bonds to specific groups of the lipid. Disaccharide molecules are observed to adopt specific conformations to fit onto the surface topology of the bilayer, often interacting with up to three different lipids simultaneously. At high disaccharide concentrations, the results of simulations indicate that disaccharides can serve as an effective replacement for water under anhydrous conditions, which helps explain their effectiveness as lyophilization agents for liposomes and cells.
引用
收藏
页码:2830 / 2844
页数:15
相关论文
共 58 条
[1]  
Allen M. P., 1987, Computer Simulation of Liquids
[2]   COMPUTER-SIMULATION OF A PHOSPHOLIPID MONOLAYER-WATER SYSTEM - THE INFLUENCE OF LONG-RANGE FORCES ON WATER-STRUCTURE AND DYNAMICS [J].
ALPER, HE ;
BASSOLINO, D ;
STOUCH, TR .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :9798-9807
[3]   Computer simulation studies of amphiphilic interfaces [J].
Bandyopadhyay, S ;
Tarek, M ;
Klein, ML .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1998, 3 (03) :242-246
[4]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   THE ROLE OF HYDROGEN-BONDING IN CARBOHYDRATES - MOLECULAR-DYNAMICS SIMULATIONS OF MALTOSE IN AQUEOUS-SOLUTION [J].
BRADY, JW ;
SCHMIDT, RK .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (04) :958-966
[7]   Computer simulation of the cryoprotectant disaccharide α,α-trehalose in aqueous solution [J].
Conrad, PB ;
de Pablo, JJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (20) :4049-4055
[8]   STABILIZATION OF DRY PHOSPHOLIPID-BILAYERS AND PROTEINS BY SUGARS [J].
CROWE, JH ;
CROWE, LM ;
CARPENTER, JF ;
WISTROM, CA .
BIOCHEMICAL JOURNAL, 1987, 242 (01) :1-10
[9]   The trehalose myth revisited: Introduction to a symposium on stabilization of cells in the dry state [J].
Crowe, JH ;
Crowe, LM ;
Oliver, AE ;
Tsvetkova, N ;
Wolkers, W ;
Tablin, F .
CRYOBIOLOGY, 2001, 43 (02) :89-105
[10]   INTERACTIONS OF SUGARS WITH MEMBRANES [J].
CROWE, JH ;
CROWE, LM ;
CARPENTER, JF ;
RUDOLPH, AS ;
WISTROM, CA ;
SPARGO, BJ ;
ANCHORDOGUY, TJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 947 (02) :367-384