Algorithms & applications -: Solution of multiscale partial differential equations using wavelets

被引:29
作者
Goedecker, S [1 ]
Ivanov, O
机构
[1] Max Planck Inst Solid State Res, Stuttgart, Germany
[2] PN Lebedev Phys Inst, Moscow 117924, Russia
来源
COMPUTERS IN PHYSICS | 1998年 / 12卷 / 06期
关键词
D O I
10.1063/1.168739
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:548 / 555
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 1993, Ten Lectures of Wavelets
[2]  
ANTOINE JP, 1998, WAVELETS PHYSICS
[3]  
ARIAS T, IN PRESS REV MOD PHY
[4]   On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases [J].
Beylkin, G ;
Keiser, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 132 (02) :233-259
[5]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[6]  
Beylkin G., 1992, SIAM J NUMER ANAL, V6, P1716
[7]   SYMMETRIC ITERATIVE INTERPOLATION PROCESSES [J].
DESLAURIERS, G ;
DUBUC, S .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :49-68
[8]  
FROEHLICH J, 1997, J COMPUT PHYS, V130, P174
[9]   Linear scaling solution of the Coulomb problem using wavelets [J].
Goedecker, S ;
Ivanov, OV .
SOLID STATE COMMUNICATIONS, 1998, 105 (11) :665-669
[10]  
Goedecker S., 1998, WAVELETS THEIR APPL