Fast/slow diffusion and growing sandpiles

被引:88
作者
Aronsson, G [1 ]
Evans, LC [1 ]
Wu, Y [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
基金
美国国家科学基金会;
关键词
D O I
10.1006/jdeq.1996.0166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a coupled system of ODE (introduced by the first author in SIAM J. Appl. Math. 22 (1972) 437-458) for the heights of growing, interacting sand cones. We show that these ODE correspond to the evolution in L(2) generated by the sub-differential of the convex Functional which vanishes on functions whose gradient has length less than or equal to one and is infinity otherwise. Additionally we explain how the ODE arise from evolutions governed by the p-Laplacian in the ''infinitely fast/infinitely slow'' diffusion limit as p --> infinity. (C) 1996 Academic Press, Inc.
引用
收藏
页码:304 / 335
页数:32
相关论文
共 16 条
[1]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[2]   MATHEMATICAL-MODEL IN SAND MECHANICS - PRESENTATION AND ANALYSIS [J].
ARONSSON, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1972, 22 (03) :437-&
[3]  
ARONSSON G, UNPUB FORMATION COMP
[4]  
ARONSSON G, 1994, REMARKS CONJECTURES
[5]  
ARONSSON G, 1984, DEPOSITION PROBLEM T
[6]  
BEHRINGER RP, 1993, NONLINEAR SCI TODAY, V3, P1
[7]  
BREZIS H., 1973, North-Holland Math. Stud., V5
[8]  
DIBENEDETTO E, 256 SFB U BONN
[9]  
DiBenedetto E., 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[10]  
EKELAND I, 1972, CONVEX ANAL VARIATIO