A finite volume discretization of the pressure gradient force using analytic integration

被引:31
作者
Adcroft, Alistair [1 ]
Hallberg, Robert [2 ]
Harrison, Matthew [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08540 USA
[2] Princeton Univ, NOAA, GFDL, Princeton, NJ 08542 USA
关键词
D O I
10.1016/j.ocemod.2008.02.001
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Layered ocean models can exhibit spurious thermobaric instability if the compressibility of sea water is not treated accurately enough. We find that previous solutions to this problem are inadequate for simulations of a changing climate. We propose a new discretization of the pressure gradient acceleration using the finite volume method. In this method, the pressure gradient acceleration is exhibited as the difference of the integral "contact" pressure acting on the edges of a finite volume. This integral "contact" pressure can be calculated analytically by choosing a tractable equation of state. The result is a discretization that has zero truncation error for an isothermal and isohaline layer and does not exhibit the spurious thermobaric instability. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:106 / 113
页数:8
相关论文
共 17 条
[1]   Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models [J].
Adcroft, A ;
Campin, JM .
OCEAN MODELLING, 2004, 7 (3-4) :269-284
[2]  
Adcroft A, 1997, MON WEATHER REV, V125, P2293, DOI 10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO
[3]  
2
[4]  
GRIFFIES SM, 2008, OCEAN MODELL UNPUB
[5]   A thermobaric instability of Lagrangian vertical coordinate ocean models [J].
Hallberg, R .
OCEAN MODELLING, 2005, 8 (03) :279-300
[6]  
Hallberg R, 1996, J PHYS OCEANOGR, V26, P913, DOI 10.1175/1520-0485(1996)026<0913:BDCIAO>2.0.CO
[7]  
2
[8]  
HANEY RL, 1991, J PHYS OCEANOGR, V21, P610, DOI 10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO
[9]  
2
[10]  
Lin SJ, 1997, Q J ROY METEOR SOC, V123, P1749, DOI 10.1002/qj.49712354214